{"title":"简单条件下MALA的几何收敛性","authors":"Alain Oliviero-Durmus, Éric Moulines","doi":"10.1093/biomet/asad060","DOIUrl":null,"url":null,"abstract":"Summary While the Metropolis Adjusted Langevin Algorithm (MALA) is a popular and widely used Markov chain Monte Carlo method, very few papers derive conditions that ensure its convergence. In particular, to the authors' knowledge, assumptions that are both easy to verify and guarantee geometric convergence, are still missing. In this work, we establish V-uniformly geometric convergence for MALA under mild assumptions about the target distribution. Unlike previous work, we only consider tail and smoothness conditions for the potential associated with the target distribution. These conditions are quite common in the MCMC literature. Finally, we pay special attention to the dependence of the bounds we derive on the step size of the Euler-Maruyama discretization, which corresponds to the proposal Markov kernel of MALA.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On geometric convergence for MALA under simple conditions\",\"authors\":\"Alain Oliviero-Durmus, Éric Moulines\",\"doi\":\"10.1093/biomet/asad060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary While the Metropolis Adjusted Langevin Algorithm (MALA) is a popular and widely used Markov chain Monte Carlo method, very few papers derive conditions that ensure its convergence. In particular, to the authors' knowledge, assumptions that are both easy to verify and guarantee geometric convergence, are still missing. In this work, we establish V-uniformly geometric convergence for MALA under mild assumptions about the target distribution. Unlike previous work, we only consider tail and smoothness conditions for the potential associated with the target distribution. These conditions are quite common in the MCMC literature. Finally, we pay special attention to the dependence of the bounds we derive on the step size of the Euler-Maruyama discretization, which corresponds to the proposal Markov kernel of MALA.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad060\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad060","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
On geometric convergence for MALA under simple conditions
Summary While the Metropolis Adjusted Langevin Algorithm (MALA) is a popular and widely used Markov chain Monte Carlo method, very few papers derive conditions that ensure its convergence. In particular, to the authors' knowledge, assumptions that are both easy to verify and guarantee geometric convergence, are still missing. In this work, we establish V-uniformly geometric convergence for MALA under mild assumptions about the target distribution. Unlike previous work, we only consider tail and smoothness conditions for the potential associated with the target distribution. These conditions are quite common in the MCMC literature. Finally, we pay special attention to the dependence of the bounds we derive on the step size of the Euler-Maruyama discretization, which corresponds to the proposal Markov kernel of MALA.
期刊介绍:
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.