时间序列预测误差的估计

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2023-09-09 DOI:10.1093/biomet/asad053
Alexander Aue, Prabir Burman
{"title":"时间序列预测误差的估计","authors":"Alexander Aue, Prabir Burman","doi":"10.1093/biomet/asad053","DOIUrl":null,"url":null,"abstract":"Summary The accurate estimation of prediction errors in time series is an important problem, which has immediate implications for the accuracy of prediction intervals as well as the quality of a number of widely used time series model selection criteria such as the Akaike information criterion. Except for simple cases, however, it is difficult or even impossible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one of the reasons that, unlike in the independent case (see Efron, 2004), up to now there has been no fully established methodology for time series prediction error estimation. Starting from an approximation to the bias-variance decomposition of the squared prediction error, a method for accurate estimation of prediction errors in both univariate and multivariate stationary time series is developed in this article. In particular, several estimates are derived for a general class of predictors that includes most of the popular linear, nonlinear, parametric and nonparametric time series models used in practice, with causal invertible autoregressive moving average and nonparametric autoregressive processes discussed as lead examples. Simulations demonstrate that the proposed estimators perform quite well in finite samples. The estimates may also be used for model selection when the purpose of modelling is prediction.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of prediction error in time series\",\"authors\":\"Alexander Aue, Prabir Burman\",\"doi\":\"10.1093/biomet/asad053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The accurate estimation of prediction errors in time series is an important problem, which has immediate implications for the accuracy of prediction intervals as well as the quality of a number of widely used time series model selection criteria such as the Akaike information criterion. Except for simple cases, however, it is difficult or even impossible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one of the reasons that, unlike in the independent case (see Efron, 2004), up to now there has been no fully established methodology for time series prediction error estimation. Starting from an approximation to the bias-variance decomposition of the squared prediction error, a method for accurate estimation of prediction errors in both univariate and multivariate stationary time series is developed in this article. In particular, several estimates are derived for a general class of predictors that includes most of the popular linear, nonlinear, parametric and nonparametric time series models used in practice, with causal invertible autoregressive moving average and nonparametric autoregressive processes discussed as lead examples. Simulations demonstrate that the proposed estimators perform quite well in finite samples. The estimates may also be used for model selection when the purpose of modelling is prediction.\",\"PeriodicalId\":9001,\"journal\":{\"name\":\"Biometrika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomet/asad053\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad053","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

时间序列预测误差的准确估计是一个重要的问题,它直接关系到预测区间的准确性以及一些广泛使用的时间序列模型选择准则(如赤池信息准则)的质量。然而,除了简单的情况外,很难甚至不可能获得一步和多步预测的精确解析表达式。这可能是原因之一,不像在独立的情况下(见Efron, 2004),到目前为止,还没有完全建立的方法来估计时间序列预测误差。本文从对预测误差平方的偏方差分解的近似出发,提出了一种单变量和多变量平稳时间序列预测误差的精确估计方法。特别是,对一般类型的预测器进行了一些估计,其中包括大多数流行的线性,非线性,参数和非参数时间序列模型,在实践中使用,因果可逆自回归移动平均和非参数自回归过程作为主要例子讨论。仿真结果表明,所提出的估计器在有限样本下具有良好的性能。当建模的目的是预测时,估计也可用于模型选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of prediction error in time series
Summary The accurate estimation of prediction errors in time series is an important problem, which has immediate implications for the accuracy of prediction intervals as well as the quality of a number of widely used time series model selection criteria such as the Akaike information criterion. Except for simple cases, however, it is difficult or even impossible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one of the reasons that, unlike in the independent case (see Efron, 2004), up to now there has been no fully established methodology for time series prediction error estimation. Starting from an approximation to the bias-variance decomposition of the squared prediction error, a method for accurate estimation of prediction errors in both univariate and multivariate stationary time series is developed in this article. In particular, several estimates are derived for a general class of predictors that includes most of the popular linear, nonlinear, parametric and nonparametric time series models used in practice, with causal invertible autoregressive moving average and nonparametric autoregressive processes discussed as lead examples. Simulations demonstrate that the proposed estimators perform quite well in finite samples. The estimates may also be used for model selection when the purpose of modelling is prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信