Cristian Iperi, Álvaro Fernández-Ochoa, Guillermo Barturen, Jacques-Olivier Pers, Nathan Foulquier, Eleonore Bettacchioli, Marta Alarcón-Riquelme, Divi Cornec, Anne Bordron, Christophe Jamin
{"title":"BiomiX, a user-friendly bioinformatic tool for democratized analysis and integration of multiomics data.","authors":"Cristian Iperi, Álvaro Fernández-Ochoa, Guillermo Barturen, Jacques-Olivier Pers, Nathan Foulquier, Eleonore Bettacchioli, Marta Alarcón-Riquelme, Divi Cornec, Anne Bordron, Christophe Jamin","doi":"10.1186/s12859-024-06022-y","DOIUrl":"10.1186/s12859-024-06022-y","url":null,"abstract":"<p><strong>Background: </strong>Interpreting biological system changes requires interpreting vast amounts of multi-omics data. While user-friendly tools exist for single-omics analysis, integrating multiple omics still requires bioinformatics expertise, limiting accessibility for the broader scientific community.</p><p><strong>Results: </strong>BiomiX tackles the bottleneck in high-throughput omics data analysis, enabling efficient and integrated analysis of multiomics data obtained from two cohorts. BiomiX incorporates diverse omics data, using DESeq2/Limma packages for transcriptomics, and quantifying metabolomics peak differences, evaluated via the Wilcoxon test with the False Discovery Rate correction. The metabolomics annotation for Liquid Chromatography-Mass Spectrometry untargeted metabolomics is additionally supported using the mass-to-charge ratio in the CEU Mass Mediator database and fragmentation spectra in the TidyMass package. Methylomics analysis is performed using the ChAMP R package. Finally, Multi-Omics Factor Analysis (MOFA) integration identifies shared sources of variation across omics data. BiomiX also generates statistics, report figures and integrates EnrichR and GSEA for biological process exploration and subgroup analysis based on user-defined gene panels enhancing condition subtyping. BiomiX fine-tunes MOFA models, to optimize factors number selection, distinguishing between cohorts and providing tools to interpret discriminative MOFA factors. The interpretation relies on innovative bibliography research on Pubmed, which provides the articles most related to the discriminant factor contributors. Furthermore, discriminant MOFA factors are correlated with clinical data, and the top contributing pathways are explored, all with the aim of guiding the user in factor interpretation.</p><p><strong>Conclusions: </strong>The analysis of single-omics and multi-omics integration in a standalone tool, along with MOFA implementation and its interpretability via literature, represents significant progress in the multi-omics field in line with the \"Findable, Accessible, Interoperable, and Reusable\" data principles. BiomiX offers a wide range of parameters and interactive data visualization, allowing for personalized analysis tailored to user needs. This R-based, user-friendly tool is compatible with multiple operating systems and aims to make multi-omics analysis accessible to non-experts in bioinformatics.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"8"},"PeriodicalIF":2.9,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721463/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Campillos-Llanos, Ana Valverde-Mateos, Adrián Capllonch-Carrión
{"title":"Hybrid natural language processing tool for semantic annotation of medical texts in Spanish.","authors":"Leonardo Campillos-Llanos, Ana Valverde-Mateos, Adrián Capllonch-Carrión","doi":"10.1186/s12859-024-05949-6","DOIUrl":"10.1186/s12859-024-05949-6","url":null,"abstract":"<p><strong>Background: </strong>Natural language processing (NLP) enables the extraction of information embedded within unstructured texts, such as clinical case reports and trial eligibility criteria. By identifying relevant medical concepts, NLP facilitates the generation of structured and actionable data, supporting complex tasks like cohort identification and the analysis of clinical records. To accomplish those tasks, we introduce a deep learning-based and lexicon-based named entity recognition (NER) tool for texts in Spanish. It performs medical NER and normalization, medication information extraction and detection of temporal entities, negation and speculation, and temporality or experiencer attributes (Age, Contraindicated, Negated, Speculated, Hypothetical, Future, Family_member, Patient and Other). We built the tool with a dedicated lexicon and rules adapted from NegEx and HeidelTime. Using these resources, we annotated a corpus of 1200 texts, with high inter-annotator agreement (average F1 = 0.841% ± 0.045 for entities, and average F1 = 0.881% ± 0.032 for attributes). We used this corpus to train Transformer-based models (RoBERTa-based models, mBERT and mDeBERTa). We integrated them with the dictionary-based system in a hybrid tool, and distribute the models via the Hugging Face hub. For an internal validation, we used a held-out test set and conducted an error analysis. For an external validation, eight medical professionals evaluated the system by revising the annotation of 200 new texts not used in development.</p><p><strong>Results: </strong>In the internal validation, the models yielded F1 values up to 0.915. In the external validation with 100 clinical trials, the tool achieved an average F1 score of 0.858 (± 0.032); and in 100 anonymized clinical cases, it achieved an average F1 score of 0.910 (± 0.019).</p><p><strong>Conclusions: </strong>The tool is available at https://claramed.csic.es/medspaner . We also release the code ( https://github.com/lcampillos/medspaner ) and the annotated corpus to train the models.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"7"},"PeriodicalIF":2.9,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianfang Tang, Yawen Hou, Yajie Meng, Zhaojing Wang, Changcheng Lu, Juan Lv, Xinrong Hu, Junlin Xu, Jialiang Yang
{"title":"CDPMF-DDA: contrastive deep probabilistic matrix factorization for drug-disease association prediction.","authors":"Xianfang Tang, Yawen Hou, Yajie Meng, Zhaojing Wang, Changcheng Lu, Juan Lv, Xinrong Hu, Junlin Xu, Jialiang Yang","doi":"10.1186/s12859-024-06032-w","DOIUrl":"https://doi.org/10.1186/s12859-024-06032-w","url":null,"abstract":"<p><p>The process of new drug development is complex, whereas drug-disease association (DDA) prediction aims to identify new therapeutic uses for existing medications. However, existing graph contrastive learning approaches typically rely on single-view contrastive learning, which struggle to fully capture drug-disease relationships. Subsequently, we introduce a novel multi-view contrastive learning framework, named CDPMF-DDA, which enhances the model's ability to capture drug-disease associations by incorporating diverse information representations from different views. First, we decompose the original drug-disease association matrix into drug and disease feature matrices, which are then used to reconstruct the drug-disease association network, as well as the drug-drug and disease-disease similarity networks. This process effectively reduces noise in the data, establishing a reliable foundation for the networks produced. Next, we generate multiple contrastive views from both the original and generated networks. These views effectively capture hidden feature associations, significantly enhancing the model's ability to represent complex relationships. Extensive cross-validation experiments on three standard datasets show that CDPMF-DDA achieves an average AUC of 0.9475 and an AUPR of 0.5009, outperforming existing models. Additionally, case studies on Alzheimer's disease and epilepsy further validate the model's effectiveness, demonstrating its high accuracy and robustness in drug-disease association prediction. Based on a multi-view contrastive learning framework, CDPMF-DDA is capable of integrating multi-source information and effectively capturing complex drug-disease associations, making it a powerful tool for drug repositioning and the discovery of new therapeutic strategies.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"5"},"PeriodicalIF":2.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James P Long, Yumeng Yang, Shohei Shimizu, Thong Pham, Kim-Anh Do
{"title":"Causal models and prediction in cell line perturbation experiments.","authors":"James P Long, Yumeng Yang, Shohei Shimizu, Thong Pham, Kim-Anh Do","doi":"10.1186/s12859-024-06027-7","DOIUrl":"https://doi.org/10.1186/s12859-024-06027-7","url":null,"abstract":"<p><p>In cell line perturbation experiments, a collection of cells is perturbed with external agents and responses such as protein expression measured. Due to cost constraints, only a small fraction of all possible perturbations can be tested in vitro. This has led to the development of computational models that can predict cellular responses to perturbations in silico. A central challenge for these models is to predict the effect of new, previously untested perturbations that were not used in the training data. Here we propose causal structural equations for modeling how perturbations effect cells. From this model, we derive two estimators for predicting responses: a Linear Regression (LR) estimator and a causal structure learning estimator that we term Causal Structure Regression (CSR). The CSR estimator requires more assumptions than LR, but can predict the effects of drugs that were not applied in the training data. Next we present Cellbox, a recently proposed system of ordinary differential equations (ODEs) based model that obtained the best prediction performance on a Melanoma cell line perturbation data set (Yuan et al. in Cell Syst 12:128-140, 2021). We derive analytic results that show a close connection between CSR and Cellbox, providing a new causal interpretation for the Cellbox model. We compare LR and CSR/Cellbox in simulations, highlighting the strengths and weaknesses of the two approaches. Finally we compare the performance of LR and CSR/Cellbox on the benchmark Melanoma data set. We find that the LR model has comparable or slightly better performance than Cellbox.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"4"},"PeriodicalIF":2.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A metric and its derived protein network for evaluation of ortholog database inconsistency.","authors":"Weijie Yang, Jingsi Ji, Gang Fang","doi":"10.1186/s12859-024-06023-x","DOIUrl":"https://doi.org/10.1186/s12859-024-06023-x","url":null,"abstract":"<p><strong>Background: </strong>Ortholog prediction, essential for various genomic research areas, faces growing inconsistencies amidst the expanding array of ortholog databases. The common strategy of computing consensus orthologs introduces additional arbitrariness, emphasizing the need to examine the causes of such inconsistencies and identify proteins susceptible to prediction errors.</p><p><strong>Results: </strong>We introduce the Signal Jaccard Index (SJI), a novel metric rooted in unsupervised genome context clustering, designed to assess protein similarity. Leveraging SJI, we construct a protein network and reveal that peripheral proteins within the network are the primary contributors to inconsistencies in orthology predictions. Furthermore, we show that a protein's degree centrality in the network serves as a strong predictor of its reliability in consensus sets.</p><p><strong>Conclusions: </strong>We present an objective, unsupervised SJI-based network encompassing all proteins, in which its topological features elucidate ortholog prediction inconsistencies. The degree centrality (DC) effectively identifies error-prone orthology assignments without relying on arbitrary parameters. Notably, DC is stable, unaffected by species selection, and well-suited for ortholog benchmarking. This approach transcends the limitations of universal thresholds, offering a robust and quantitative framework to explore protein evolution and functional relationships.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"6"},"PeriodicalIF":2.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707888/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DFAST_QC: quality assessment and taxonomic identification tool for prokaryotic Genomes.","authors":"Mohamed Elmanzalawi, Takatomo Fujisawa, Hiroshi Mori, Yasukazu Nakamura, Yasuhiro Tanizawa","doi":"10.1186/s12859-024-06030-y","DOIUrl":"https://doi.org/10.1186/s12859-024-06030-y","url":null,"abstract":"<p><strong>Background: </strong>Accurate taxonomic classification in genome databases is essential for reliable biological research and effective data sharing. Mislabeling or inaccuracies in genome annotations can lead to incorrect scientific conclusions and hinder the reproducibility of research findings. Despite advances in genome analysis techniques, challenges persist in ensuring precise and reliable taxonomic assignments. Existing tools for genome verification often involve extensive computational resources or lengthy processing times, which can limit their accessibility and scalability for large-scale projects. There is a need for more efficient, user-friendly solutions that can handle diverse datasets and provide accurate results with minimal computational demands. This work aimed to address these challenges by introducing a novel tool that enhances taxonomic accuracy, offers a user-friendly interface, and supports large-scale analyses.</p><p><strong>Results: </strong>We introduce a novel tool for the quality control and taxonomic classification tool of prokaryotic genomes, called DFAST_QC, which is available as both a command-line tool and a web service. DFAST_QC can quickly identify species based on NCBI and GTDB taxonomies by combining genome-distance calculations using MASH with ANI calculations using Skani. We evaluated DFAST_QC's performance in species identification and found it to be highly consistent with existing taxonomic standards, successfully identifying species across diverse datasets. In several cases, DFAST_QC identified potential mislabeling of species names in public databases and highlighted discrepancies in current classifications, demonstrating its capability to uncover errors and enhance taxonomic accuracy. Additionally, the tool's efficient design allows it to operate smoothly on local machines with minimal computational requirements, making it a practical choice for large-scale genome projects.</p><p><strong>Conclusions: </strong>DFAST_QC is a reliable and efficient tool for accurate taxonomic identification and genome quality control, well-suited for large-scale genomic studies. Its compatibility with limited-resource environments, combined with its user-friendly design, ensures seamless integration into existing workflows. DFAST_QC's ability to refine species assignments in public databases highlights its value as a complementary tool for maintaining and enhancing the accuracy of taxonomic data in genomic research. The web version is available at https://dfast.ddbj.nig.ac.jp/dqc/submit/ , and the source code for local use can be found at https://github.com/nigyta/dfast_qc .</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"3"},"PeriodicalIF":2.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705978/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SequenceCraft: machine learning-based resource for exploratory analysis of RNA-cleaving deoxyribozymes.","authors":"M Eremeyeva, Y Din, N Shirokii, N Serov","doi":"10.1186/s12859-024-06019-7","DOIUrl":"https://doi.org/10.1186/s12859-024-06019-7","url":null,"abstract":"<p><strong>Background: </strong>Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate. However, the vast majority of existing DNAzyme catalytic cores have low efficacy in in vivo experiments, whereas SELEX based on in vitro screening offers long and expensive selection cycle with the average success rate of ~ 30%, moreover not allowing the direct selection of chemically modified DNAzymes, which were previously shown to demonstrate higher activity in vivo. Therefore, there is a huge need in in silico approach for exploratory analysis of RNA-cleaving DNAzyme cores to drastically ease the discovery of novel catalytic cores with superior activities.</p><p><strong>Results: </strong>In this work, we develop a machine learning based open-source platform SequenceCraft allowing experimental scientists to perform DNAzyme exploratory analysis via quantitative observed rate constant (k<sub>obs</sub>) estimation as well as statistical and clustering data analysis. This became possible with the development of a unique curated database of > 350 RNA-cleaving catalytic cores, property-based sequence representations allowing to work with both conventional and chemically modified nucleotides, and optimized k<sub>obs</sub> predicting algorithm achieving Q<sup>2</sup> > 0.9 on experimental data published to date.</p><p><strong>Conclusions: </strong>This work represents a significant advancement in DNAzyme research, providing a tool for more efficient discovery of RNA-cleaving DNAzymes. The SequenceCraft platform offers an in silico alternative to traditional experimental approaches, potentially accelerating the development of DNAzymes.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"2"},"PeriodicalIF":2.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes.","authors":"Tongjun Xiang, Huibao Feng, Xin-Hui Xing, Chong Zhang","doi":"10.1186/s12859-024-06012-0","DOIUrl":"10.1186/s12859-024-06012-0","url":null,"abstract":"<p><strong>Background: </strong>CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.</p><p><strong>Results: </strong>We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms. GLiDe incorporates a robust quality control framework, rooted in prior experimental knowledge, ensuring the accurate identification of off-target hits. It boasts an extensive built-in database, encompassing 1,397 common prokaryotic species as a comprehensive design resource. It also provides the capability to design sgRNAs for newly discovered organisms by accepting uploaded design resource. We further demonstrated that GLiDe exhibits enhanced precision in identifying off-target binding sites for the CRISPRi system.</p><p><strong>Conclusions: </strong>We present a web server that allows the construction of genome-scale CRISPRi sgRNA libraries for prokaryotes. It mitigates off-target effects through a robust quality control framework, leveraging prior experimental knowledge within an end-to-end, user-friendly pipeline.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"1"},"PeriodicalIF":2.9,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699761/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shuang Liang, Linzhe Li, Wei Zu, Wei Feng, Wenlong Hang
{"title":"Adaptive deep feature representation learning for cross-subject EEG decoding.","authors":"Shuang Liang, Linzhe Li, Wei Zu, Wei Feng, Wenlong Hang","doi":"10.1186/s12859-024-06024-w","DOIUrl":"10.1186/s12859-024-06024-w","url":null,"abstract":"<p><strong>Background: </strong>The collection of substantial amounts of electroencephalogram (EEG) data is typically time-consuming and labor-intensive, which adversely impacts the development of decoding models with strong generalizability, particularly when the available data is limited. Utilizing sufficient EEG data from other subjects to aid in modeling the target subject presents a potential solution, commonly referred to as domain adaptation. Most current domain adaptation techniques for EEG decoding primarily focus on learning shared feature representations through domain alignment strategies. Since the domain shift cannot be completely removed, target EEG samples located near the edge of clusters are also susceptible to misclassification.</p><p><strong>Methods: </strong>We propose a novel adaptive deep feature representation (ADFR) framework to improve the cross-subject EEG classification performance through learning transferable EEG feature representations. Specifically, we first minimize the distribution discrepancy between the source and target domains by employing maximum mean discrepancy (MMD) regularization, which aids in learning the shared feature representations. We then utilize the instance-based discriminative feature learning (IDFL) regularization to make the learned feature representations more discriminative. Finally, the entropy minimization (EM) regularization is further integrated to adjust the classifier to pass through the low-density region between clusters. The synergistic learning between above regularizations during the training process enhances EEG decoding performance across subjects.</p><p><strong>Results: </strong>The effectiveness of the ADFR framework was evaluated on two public motor imagery (MI)-based EEG datasets: BCI Competition III dataset 4a and BCI Competition IV dataset 2a. In terms of average accuracy, ADFR achieved improvements of 3.0% and 2.1%, respectively, over the state-of-the-art methods on these datasets.</p><p><strong>Conclusions: </strong>The promising results highlight the effectiveness of the ADFR algorithm for EEG decoding and show its potential for practical applications.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"393"},"PeriodicalIF":2.9,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11686875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142908678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiaosheng Zhang, Yalong Wei, Jie Hou, Hongpeng Li, Zhaoman Zhong
{"title":"AEGAN-Pathifier: a data augmentation method to improve cancer classification for imbalanced gene expression data.","authors":"Qiaosheng Zhang, Yalong Wei, Jie Hou, Hongpeng Li, Zhaoman Zhong","doi":"10.1186/s12859-024-06013-z","DOIUrl":"10.1186/s12859-024-06013-z","url":null,"abstract":"<p><strong>Background: </strong>Cancer classification has consistently been a challenging problem, with the main difficulties being high-dimensional data and the collection of patient samples. Concretely, obtaining patient samples is a costly and resource-intensive process, and imbalances often exist between samples. Moreover, expression data is characterized by high dimensionality, small samples and high noise, which could easily lead to struggles such as dimensionality catastrophe and overfitting. Thus, we incorporate prior knowledge from the pathway and combine AutoEncoder and Generative Adversarial Network (GAN) to solve these difficulties.</p><p><strong>Results: </strong>In this study, we propose an effective and efficient deep learning method, named AEGAN, which combines the capabilities of AutoEncoder and GAN to generate synthetic samples of the minority class in imbalanced gene expression data. The proposed data balancing technique has been demonstrated to be useful for cancer classification and improving the performance of classifier models. Additionally, we integrate prior knowledge from the pathway and employ the pathifier algorithm to calculate pathway scores for each sample. This data augmentation approach, referred to as AEGAN-Pathifier, not only preserves the biological functionality of the data but also possesses dimensional reduction capabilities. Through validation with various classifiers, the experimental results show an improvement in classifier performance.</p><p><strong>Conclusion: </strong>AEGAN-Pathifier shows improved performance on the imbalanced datasets GSE25066, GSE20194, BRCA and Liver24. Results from various classifiers indicate that AEGAN-Pathifier has good generalization capability.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"392"},"PeriodicalIF":2.9,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}