Wei Zhang, Zeqi Xu, Ruochen Yu, Mingfeng Jiang, Qi Dai
{"title":"DualGCN-GE:整合全血表达数据的时空表征与双视图图卷积网络,以识别帕金森病亚型。","authors":"Wei Zhang, Zeqi Xu, Ruochen Yu, Mingfeng Jiang, Qi Dai","doi":"10.1186/s12859-025-06181-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As a typical type of neurodegenerative disorders, Parkinson's disease(PD) is characterized by significant clinical and progression heterogeneity. Based on gene expression data, reliable detection of PACE subtypes in Parkinson's disease(PD-PACE) has played a crucial role in addressing the heterogeneity of this disease. Established machine learning approaches generally adopt single-view learning schemes and employ temporal features underlying RNA sequencing data. Topological features, which are associated with gene graphs and cell graphs, were disregarded in previous works. Actually, Parkinson-specific gene graphs(PGG) could act as topological features to capture structural changes of molecular networks.</p><p><strong>Results: </strong>Under the framework of dual-view graph learning, this study proposes a DualGCN-GE method to identify multiple PD-PACE subtypes from whole-blood expression data, with regards of progression velocity. This DualGCN-GE method has proposed dual-view graph convolution network(GCN) to integrate temporal and topological features underlying whole-blood expression data, thus detecting PD-PACE subtypes. Experimental analysis of three benchmark datasets has validated the effectiveness and advantage of the DualGCN-GE method in the disease subtype detection task.</p><p><strong>Conclusion: </strong>For gene expression data of human blood samples, topological features have encoded unique information that are absent in temporal features. Using a collaborative fusion strategy, spatio-temporal representations extracted from whole blood expression data have improved accuracy and reliability in detecting PD-PACE subtypes.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"208"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341084/pdf/","citationCount":"0","resultStr":"{\"title\":\"DualGCN-GE: integration of spatiotemporal representations from whole-blood expression data with dual-view graph convolution network to identify Parkinson's disease subtypes.\",\"authors\":\"Wei Zhang, Zeqi Xu, Ruochen Yu, Mingfeng Jiang, Qi Dai\",\"doi\":\"10.1186/s12859-025-06181-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>As a typical type of neurodegenerative disorders, Parkinson's disease(PD) is characterized by significant clinical and progression heterogeneity. Based on gene expression data, reliable detection of PACE subtypes in Parkinson's disease(PD-PACE) has played a crucial role in addressing the heterogeneity of this disease. Established machine learning approaches generally adopt single-view learning schemes and employ temporal features underlying RNA sequencing data. Topological features, which are associated with gene graphs and cell graphs, were disregarded in previous works. Actually, Parkinson-specific gene graphs(PGG) could act as topological features to capture structural changes of molecular networks.</p><p><strong>Results: </strong>Under the framework of dual-view graph learning, this study proposes a DualGCN-GE method to identify multiple PD-PACE subtypes from whole-blood expression data, with regards of progression velocity. This DualGCN-GE method has proposed dual-view graph convolution network(GCN) to integrate temporal and topological features underlying whole-blood expression data, thus detecting PD-PACE subtypes. Experimental analysis of three benchmark datasets has validated the effectiveness and advantage of the DualGCN-GE method in the disease subtype detection task.</p><p><strong>Conclusion: </strong>For gene expression data of human blood samples, topological features have encoded unique information that are absent in temporal features. Using a collaborative fusion strategy, spatio-temporal representations extracted from whole blood expression data have improved accuracy and reliability in detecting PD-PACE subtypes.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"208\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06181-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06181-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
DualGCN-GE: integration of spatiotemporal representations from whole-blood expression data with dual-view graph convolution network to identify Parkinson's disease subtypes.
Background: As a typical type of neurodegenerative disorders, Parkinson's disease(PD) is characterized by significant clinical and progression heterogeneity. Based on gene expression data, reliable detection of PACE subtypes in Parkinson's disease(PD-PACE) has played a crucial role in addressing the heterogeneity of this disease. Established machine learning approaches generally adopt single-view learning schemes and employ temporal features underlying RNA sequencing data. Topological features, which are associated with gene graphs and cell graphs, were disregarded in previous works. Actually, Parkinson-specific gene graphs(PGG) could act as topological features to capture structural changes of molecular networks.
Results: Under the framework of dual-view graph learning, this study proposes a DualGCN-GE method to identify multiple PD-PACE subtypes from whole-blood expression data, with regards of progression velocity. This DualGCN-GE method has proposed dual-view graph convolution network(GCN) to integrate temporal and topological features underlying whole-blood expression data, thus detecting PD-PACE subtypes. Experimental analysis of three benchmark datasets has validated the effectiveness and advantage of the DualGCN-GE method in the disease subtype detection task.
Conclusion: For gene expression data of human blood samples, topological features have encoded unique information that are absent in temporal features. Using a collaborative fusion strategy, spatio-temporal representations extracted from whole blood expression data have improved accuracy and reliability in detecting PD-PACE subtypes.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.