{"title":"自动编码器与共享和特定嵌入的多组学数据集成。","authors":"Chao Wang, Michael J O'Connell","doi":"10.1186/s12859-025-06245-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In cancer research, different levels of high-dimensional data are often collected for the same subjects. Effective integration of these data by considering the shared and specific information from each data source can help us better understand different types of cancer.</p><p><strong>Results: </strong>In this study we propose a novel autoencoder (AE) structure with explicitly defined orthogonal loss between the shared and specific embeddings to integrate different data sources. We compare our model with previously proposed AE structures based on simulated data and real cancer data from The Cancer Genome Atlas. Using simulations with different proportions of differentially expressed genes, we compare the performance of AE methods for subsequent classification tasks. We also compare the model performance with a commonly used dimension reduction method, joint and individual variance explained (JIVE). In terms of reconstruction loss, our proposed AE models with orthogonal constraints have a slightly better reconstruction loss. All AE models achieve higher classification accuracy than the original features, demonstrating the usefulness of the embeddings extracted by the model.</p><p><strong>Conclusions: </strong>We show that the proposed models have consistently high classification accuracy on both training and testing sets. In comparison, the recently proposed MOCSS model that imposes an orthogonality penalty in the post-processing step has lower classification accuracy that is on par with JIVE.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"214"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Autoencoders with shared and specific embeddings for multi-omics data integration.\",\"authors\":\"Chao Wang, Michael J O'Connell\",\"doi\":\"10.1186/s12859-025-06245-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In cancer research, different levels of high-dimensional data are often collected for the same subjects. Effective integration of these data by considering the shared and specific information from each data source can help us better understand different types of cancer.</p><p><strong>Results: </strong>In this study we propose a novel autoencoder (AE) structure with explicitly defined orthogonal loss between the shared and specific embeddings to integrate different data sources. We compare our model with previously proposed AE structures based on simulated data and real cancer data from The Cancer Genome Atlas. Using simulations with different proportions of differentially expressed genes, we compare the performance of AE methods for subsequent classification tasks. We also compare the model performance with a commonly used dimension reduction method, joint and individual variance explained (JIVE). In terms of reconstruction loss, our proposed AE models with orthogonal constraints have a slightly better reconstruction loss. All AE models achieve higher classification accuracy than the original features, demonstrating the usefulness of the embeddings extracted by the model.</p><p><strong>Conclusions: </strong>We show that the proposed models have consistently high classification accuracy on both training and testing sets. In comparison, the recently proposed MOCSS model that imposes an orthogonality penalty in the post-processing step has lower classification accuracy that is on par with JIVE.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"214\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12362917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06245-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06245-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Autoencoders with shared and specific embeddings for multi-omics data integration.
Background: In cancer research, different levels of high-dimensional data are often collected for the same subjects. Effective integration of these data by considering the shared and specific information from each data source can help us better understand different types of cancer.
Results: In this study we propose a novel autoencoder (AE) structure with explicitly defined orthogonal loss between the shared and specific embeddings to integrate different data sources. We compare our model with previously proposed AE structures based on simulated data and real cancer data from The Cancer Genome Atlas. Using simulations with different proportions of differentially expressed genes, we compare the performance of AE methods for subsequent classification tasks. We also compare the model performance with a commonly used dimension reduction method, joint and individual variance explained (JIVE). In terms of reconstruction loss, our proposed AE models with orthogonal constraints have a slightly better reconstruction loss. All AE models achieve higher classification accuracy than the original features, demonstrating the usefulness of the embeddings extracted by the model.
Conclusions: We show that the proposed models have consistently high classification accuracy on both training and testing sets. In comparison, the recently proposed MOCSS model that imposes an orthogonality penalty in the post-processing step has lower classification accuracy that is on par with JIVE.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.