Zi-Xu Zhang , Ying-Shuang Xu , Zi-Jia Li , Lu-Wei Xu , Wang Ma , Ying-Feng Li , Dong-Sheng Guo , Xiao-Man Sun , He Huang
{"title":"Turning waste into treasure: A new direction for low-cost production of lipid chemicals from Thraustochytrids","authors":"Zi-Xu Zhang , Ying-Shuang Xu , Zi-Jia Li , Lu-Wei Xu , Wang Ma , Ying-Feng Li , Dong-Sheng Guo , Xiao-Man Sun , He Huang","doi":"10.1016/j.biotechadv.2024.108354","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108354","url":null,"abstract":"<div><p><em>Thraustochytrids</em> are marine microorganisms known for their fast growth and ability to store lipids, making them useful for producing polyunsaturated fatty acids (PUFAs), biodiesel, squalene, and carotenoids. However, the high cost of production, mainly due to expensive fermentation components, limits their wider use. A significant challenge in this context is the need to balance production costs with the value of the end products. This review focuses on integrating the efficient utilization of waste with <em>Thraustochytrids</em> fermentation, including the economic substitution of carbon sources, nitrogen sources, and fermentation water. This approach aligns with the 3Rs principles (reduction, recycling, and reuse). Furthermore, it emphasizes the role of <em>Thraustochytrids</em> in converting waste into lipid chemicals and promoting sustainable circular production models. The aim of this review is to emphasize the value of <em>Thraustochytrids</em> in converting waste into treasure, providing precise cost reduction strategies for future commercial production.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in design and application of synthetic membraneless organelles","authors":"Li Wan , Yingying Zhu , Wenli Zhang , Wanmeng Mu","doi":"10.1016/j.biotechadv.2024.108355","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108355","url":null,"abstract":"<div><p>Membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) have been extensively studied due to their spatiotemporal control of biochemical and cellular processes in living cells. These findings have provided valuable insights into the physicochemical principles underlying the formation and functionalization of biomolecular condensates, which paves the way for the development of versatile phase-separating systems capable of addressing a variety of application scenarios. Here, we highlight the potential of constructing synthetic MLOs with programmable and functional properties. Notably, we organize how these synthetic membraneless compartments have been capitalized to manipulate enzymatic activities and metabolic reactions. The aim of this review is to inspire readerships to deeply comprehend the widespread roles of synthetic MLOs in the regulation enzymatic reactions and control of metabolic processes, and to encourage the rational design of controllable and functional membraneless compartments for a broad range of bioengineering applications.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140539625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chengcheng Jiang , Yuqi Ma , Wei Wang , Jingjing Sun , Jianhua Hao , Xiangzhao Mao
{"title":"Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology","authors":"Chengcheng Jiang , Yuqi Ma , Wei Wang , Jingjing Sun , Jianhua Hao , Xiangzhao Mao","doi":"10.1016/j.biotechadv.2024.108351","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108351","url":null,"abstract":"<div><p>Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, <em>exo</em>-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications","authors":"Shi-Peng Zhou , Ya-Ping Xue , Yu-Guo Zheng","doi":"10.1016/j.biotechadv.2024.108352","DOIUrl":"https://doi.org/10.1016/j.biotechadv.2024.108352","url":null,"abstract":"<div><p>Nitrilases represent a distinct class of enzymes that play a pivotal role in catalyzing the hydrolysis of nitrile compounds, leading to the formation of corresponding carboxylic acids. These enzymatic entities have garnered significant attention across a spectrum of industries, encompassing pharmaceuticals, agrochemicals, and fine chemicals. Moreover, their significance has been accentuated by mounting environmental pressures, propelling them into the forefront of biodegradation and bioremediation endeavors. Nevertheless, the natural nitrilases exhibit intrinsic limitations such as low thermal stability, narrow substrate selectivity, and inadaptability to varying environmental conditions. In the past decade, substantial efforts have been made in elucidating the structural underpinnings and catalytic mechanisms of nitrilase, providing basis for engineering of nitrilases. Significant breakthroughs have been made in the regulation of nitrilases with ideal catalytic properties and application of the enzymes for industrial productions. This review endeavors to provide a comprehensive discourse and summary of recent research advancements related to nitrilases, with a particular emphasis on the elucidation of the structural attributes, catalytic mechanisms, catalytic characteristics, and strategies for improving catalytic performance of nitrilases. Moreover, the exploration extends to the domain of process engineering and the multifarious applications of nitrilases. Furthermore, the future development trend of nitrilases is prospected, providing important guidance for research and application in the related fields.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140350335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stanislav Anastassov, Maurice Filo, Mustafa Khammash
{"title":"Inteins: A Swiss army knife for synthetic biology","authors":"Stanislav Anastassov, Maurice Filo, Mustafa Khammash","doi":"10.1016/j.biotechadv.2024.108349","DOIUrl":"10.1016/j.biotechadv.2024.108349","url":null,"abstract":"<div><p>Inteins are proteins found in nature that execute protein splicing. Among them, split inteins stand out for their versatility and adaptability, presenting creative solutions for addressing intricate challenges in various biological applications. Their exquisite attributes, including compactness, reliability, orthogonality, low toxicity, and irreversibility, make them of interest to various fields including synthetic biology, biotechnology and biomedicine. In this review, we delve into the inherent challenges of using inteins, present approaches for overcoming these challenges, and detail their reliable use for specific cellular tasks. We will discuss the use of conditional inteins in areas like cancer therapy, drug screening, patterning, infection treatment, diagnostics and biocontainment. Additionally, we will underscore the potential of inteins in executing basic logical operations with practical implications. We conclude by showcasing their potential in crafting complex genetic circuits for performing computations and feedback control that achieves robust perfect adaptation.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lucia Enriquez-Rodriguez , Noha Attia , Idoia Gallego , Mohamed Mashal , Iván Maldonado , Gustavo Puras , José Luis Pedraz
{"title":"Expanding the horizon of transient CAR T therapeutics using virus-free technology","authors":"Lucia Enriquez-Rodriguez , Noha Attia , Idoia Gallego , Mohamed Mashal , Iván Maldonado , Gustavo Puras , José Luis Pedraz","doi":"10.1016/j.biotechadv.2024.108350","DOIUrl":"10.1016/j.biotechadv.2024.108350","url":null,"abstract":"<div><p>The extraordinary success that chimeric antigen receptor (CAR) T cell therapies have shown over the years on fighting hematological malignancies is evidenced by the six FDA-approved products present on the market. CAR T treatments have forever changed the way we understand cellular immunotherapies, as current research in the topic is expanding even outside the field of cancer with very promising results. Until now, virus-based strategies have been used for CAR T cell manufacturing. However, this methodology presents relevant limitations that need to be addressed prior to wide spreading this technology to other pathologies and in order to optimize current cancer treatments. Several approaches are being explored to overcome these challenges such as virus-free alternatives that additionally offer the possibility of developing transient CAR expression or <em>in vivo</em> T cell modification. In this review, we aim to spotlight a pivotal juncture in the history of medicine where a significant change in perspective is occurring. We review the current progress made on viral-based CAR T therapies as well as their limitations and we discuss the future outlook of virus-free CAR T strategies to overcome current challenges and achieve affordable immunotherapies for a wide variety of pathologies, including cancer.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy","authors":"Jianfei Wang, Jiaqi Huang, Shijie Liu","doi":"10.1016/j.biotechadv.2024.108340","DOIUrl":"10.1016/j.biotechadv.2024.108340","url":null,"abstract":"<div><p>As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140304766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Liu , Boyuan Xue , Hao Liu, Shaojie Wang, Haijia Su
{"title":"Rational construction of synthetic consortia: Key considerations and model-based methods for guiding the development of a novel biosynthesis platform","authors":"Yu Liu , Boyuan Xue , Hao Liu, Shaojie Wang, Haijia Su","doi":"10.1016/j.biotechadv.2024.108348","DOIUrl":"10.1016/j.biotechadv.2024.108348","url":null,"abstract":"<div><p>The rapid development of synthetic biology has significantly improved the capabilities of mono-culture systems in converting different substrates into various value-added bio-chemicals through metabolic engineering. However, overexpression of biosynthetic pathways in recombinant strains can impose a heavy metabolic burden on the host, resulting in imbalanced energy distribution and negatively affecting both cell growth and biosynthesis capacity. Synthetic consortia, consisting of two or more microbial species or strains with complementary functions, have emerged as a promising and efficient platform to alleviate the metabolic burden and increase product yield. However, research on synthetic consortia is still in its infancy, with numerous challenges regarding the design and construction of stable synthetic consortia. This review provides a comprehensive comparison of the advantages and disadvantages of mono-culture systems and synthetic consortia. Key considerations for engineering synthetic consortia based on recent advances are summarized, and simulation and computational tools for guiding the advancement of synthetic consortia are discussed. Moreover, further development of more efficient and cost-effective synthetic consortia with emerging technologies such as artificial intelligence and machine learning is highlighted.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140292682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aipeng Li , Xupeng Cao , Rongzhan Fu , Shuqi Guo , Qiang Fei
{"title":"Biocatalysis of CO2 and CH4: Key enzymes and challenges","authors":"Aipeng Li , Xupeng Cao , Rongzhan Fu , Shuqi Guo , Qiang Fei","doi":"10.1016/j.biotechadv.2024.108347","DOIUrl":"10.1016/j.biotechadv.2024.108347","url":null,"abstract":"<div><p>Mitigating greenhouse gas emissions is a critical challenge for promoting global sustainability. The utilization of CO<sub>2</sub> and CH<sub>4</sub> as substrates for the production of valuable products offers a promising avenue for establishing an eco-friendly economy. Biocatalysis, a sustainable process utilizing enzymes to facilitate biochemical reactions, plays a significant role in upcycling greenhouse gases. This review provides a comprehensive overview of the enzymes and associated reactions involved in the biocatalytic conversion of CO<sub>2</sub> and CH<sub>4</sub>. Furthermore, the challenges facing the field are discussed, paving the way for future research directions focused on developing robust enzymes and systems for the efficient fixation of CO<sub>2</sub> and CH<sub>4</sub>.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140288162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jaeseong Hwang , Dae-Yeol Ye , Gyoo Yeol Jung , Sungho Jang
{"title":"Mobile genetic element-based gene editing and genome engineering: Recent advances and applications","authors":"Jaeseong Hwang , Dae-Yeol Ye , Gyoo Yeol Jung , Sungho Jang","doi":"10.1016/j.biotechadv.2024.108343","DOIUrl":"10.1016/j.biotechadv.2024.108343","url":null,"abstract":"<div><p>Genome engineering has revolutionized several scientific fields, ranging from biochemistry and fundamental research to therapeutic uses and crop development. Diverse engineering toolkits have been developed and used to effectively modify the genome sequences of organisms. However, there is a lack of extensive reviews on genome engineering technologies based on mobile genetic elements (MGEs), which induce genetic diversity within host cells by changing their locations in the genome. This review provides a comprehensive update on the versatility of MGEs as powerful genome engineering tools that offers efficient solutions to challenges associated with genome engineering. MGEs, including DNA transposons, retrotransposons, retrons, and CRISPR-associated transposons, offer various advantages, such as a broad host range, genome-wide mutagenesis, efficient large-size DNA integration, multiplexing capabilities, and <em>in situ</em> single-stranded DNA generation. We focused on the components, mechanisms, and features of each MGE-based tool to highlight their cellular applications. Finally, we discussed the current challenges of MGE-based genome engineering and provided insights into the evolving landscape of this transformative technology. In conclusion, the combination of genome engineering with MGE demonstrates remarkable potential for addressing various challenges and advancing the field of genetic manipulation, and promises to revolutionize our ability to engineer and understand the genomes of diverse organisms.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":null,"pages":null},"PeriodicalIF":16.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140193239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}