{"title":"Retraction: Nucleus pulposus cell apoptosis is attenuated by CDMP-2 through regulating oxidative damage under the hyper-osmotic environment.","authors":"","doi":"10.1042/BSR-2018-1176_RET","DOIUrl":"10.1042/BSR-2018-1176_RET","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 8","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345781/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction: Osteogenic protein-1 attenuates nucleus pulposus cell apoptosis through activating the PI3K/Akt/mTOR pathway in a hyperosmotic culture.","authors":"","doi":"10.1042/BSR-2018-1708_RET","DOIUrl":"10.1042/BSR-2018-1708_RET","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 8","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345783/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction: Role of p38-MAPK pathway in the effects of high-magnitude compression on nucleus pulposus cell senescence in a disc perfusion culture.","authors":"","doi":"10.1042/BSR-2017-0718_RET","DOIUrl":"10.1042/BSR-2017-0718_RET","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 8","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345787/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction: The response of nucleus pulposus cell senescence to static and dynamic compressions in a disc organ culture.","authors":"","doi":"10.1042/BSR-2018-0064_RET","DOIUrl":"10.1042/BSR-2018-0064_RET","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 8","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural characterization of DNA-binding domain of essential mammalian protein TTF 1.","authors":"Gajender Singh, Abhinetra Jagdish Bhopale, Saloni Khatri, Prashant Prakash, Rajnish Kumar, Sukh Mahendra Singh, Samarendra Kumar Singh","doi":"10.1042/BSR20240800","DOIUrl":"10.1042/BSR20240800","url":null,"abstract":"<p><p>Transcription Termination Factor 1 (TTF1) is a multifunctional mammalian protein with vital roles in various cellular processes, including Pol I-mediated transcription initiation and termination, pre-rRNA processing, chromatin remodelling, DNA damage repair, and polar replication fork arrest. It comprises two distinct functional regions; the N-terminal regulatory region (1-445 aa), and the C-terminal catalytic region (445-859 aa). The Myb domain located at the C-terminal region is a conserved DNA binding domain spanning from 550 to 732 aa (183 residues). Despite its critical role in various cellular processes, the physical structure of TTF1 remains unsolved. Attempts to purify the functional TTF1 protein have been unsuccessful till date. Therefore, we focused on characterizing the Myb domain of this essential protein. We started with predicting a 3-D model of the Myb domain using homology modelling, and ab-initio method. We then determined its stability through MD simulation in an explicit solvent. The model predicted is highly stable, which stabilizes at 200ns. To experimentally validate the computational model, we cloned and expressed the codon optimized Myb domain into a bacterial expression vector and purified the protein to homogeneity. Further, characterization of the protein shows that, Myb domain is predominantly helical (65%) and is alone sufficient to bind the Sal Box DNA. This is the first-ever study to report a complete in silico model of the Myb domain, which is physically characterized. The above study will pave the way towards solving the atomic structure of this essential mammalian protein.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transglutaminase 2-mediated histone monoaminylation and its role in cancer.","authors":"Huapeng Li, Jinghua Wu, Nan Zhang, Qingfei Zheng","doi":"10.1042/BSR20240493","DOIUrl":"10.1042/BSR20240493","url":null,"abstract":"<p><p>Transglutaminase 2 (TGM2) has been known as a well-characterized factor regulating the progression of multiple types of cancer, due to its multifunctional activities and the ubiquitous signaling pathways it is involved in. As a member of the transglutaminase family, TGM2 catalyzes protein post-translational modifications (PTMs), including monoaminylation, amide hydrolysis, cross-linking, etc., through the transamidation of variant glutamine-containing protein substrates. Recent discoveries revealed histone as an important category of TGM2 substrates, thus identifying histone monoaminylation as an emerging epigenetic mark, which is highly enriched in cancer cells and possesses significant regulatory functions of gene transcription. In this review, we will summarize recent advances in TGM2-mediated histone monoaminylation as well as its role in cancer and discuss the key research methodologies to better understand this unique epigenetic mark, thereby shedding light on the therapeutic potential of TGM2 as a druggable target in cancer treatment.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Muñoz-Ayala, Brenda Chimal-Vega, Nicolás Serafín-Higuera, Octavio Galindo-Hernández, Gladys Ramírez-Rosales, Iván Córdova-Guerrero, Luis Fernando Gómez-Lucas, Victor García-González
{"title":"Tamoxifen metabolites treatment promotes ERα+ transition to triple negative phenotype in vitro, effects of LDL in chemoresistance.","authors":"Andrea Muñoz-Ayala, Brenda Chimal-Vega, Nicolás Serafín-Higuera, Octavio Galindo-Hernández, Gladys Ramírez-Rosales, Iván Córdova-Guerrero, Luis Fernando Gómez-Lucas, Victor García-González","doi":"10.1042/BSR20240444","DOIUrl":"10.1042/BSR20240444","url":null,"abstract":"<p><strong>Objective: </strong>Estrogen receptor-positive (ER+) breast cancer represents about 80% of cases, tamoxifen is the election neoadjuvant chemotherapy. However, a large percentage of patients develop chemoresistance, compromising recovery. Clinical evidence suggests that high plasmatic levels of low-density lipoproteins (LDL) could promote cancer progression. The present study analyzed the effect of LDL on the primary plasmatic active Tamoxifen's metabolites resistance acquisition, 4-hydroxytamoxifen (4OH-Tam) and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen), in breast cancer ERα + cells (MCF-7).</p><p><strong>Methods: </strong>Two resistant cellular variants, MCF-7Var-H and MCF-7Var-I, were generated by a novel strategy and their phenotype features were evaluated. Phenotypic assessment was performed by MTT assays, cytometry, immunofluorescence microscopy, zymography and protein expression analysis.</p><p><strong>Results: </strong>MCF-7Var-H, generated only with tamoxifen metabolites, showed a critical down-regulation in hormone receptors, augmented migration capacity, metalloprotease 9 extracellular medium excretion, and a mesenchymal morphology in contrast with native MCF-7, suggesting the transition towards Triple-negative breast cancer (TNBC) phenotype. In contrast, MCF-7Var-I which was generated in a high LDL media, showed only a slight upregulation in ER and other less noticeable metabolic adaptations. Results suggest a potential role of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in phenotypic differences observed among variants.</p><p><strong>Conclusion: </strong>LDL high or low concentrations during Tamoxifen´s metabolites chemoresistance acquisition leads to different cellular mechanisms related to chemoresistance. A novel adaptative cellular response associated with Nrf2 activity could be implicated.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction: Bone morphogenetic protein-7 retards cell subculture-induced senescence of human nucleus pulposus cells through activating the PI3K/Akt pathway.","authors":"","doi":"10.1042/BSR-2018-2312_RET","DOIUrl":"10.1042/BSR-2018-2312_RET","url":null,"abstract":"","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":"44 8","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}