{"title":"Caloric restriction mimetics improve gut microbiota: a promising neurotherapeutics approach for managing age-related neurodegenerative disorders.","authors":"Ishika Singh, Shashi Anand, Deepashree J Gowda, Amitha Kamath, Abhishek Kumar Singh","doi":"10.1007/s10522-024-10128-4","DOIUrl":"10.1007/s10522-024-10128-4","url":null,"abstract":"<p><p>The gut microbiota (GM) produces various molecules that regulate the physiological functionality of the brain through the gut-brain axis (GBA). Studies suggest that alteration in GBA may lead to the onset and progression of various neurological dysfunctions. Moreover, aging is one of the prominent causes that contribute to the alteration of GBA. With age, GM undergoes a shift in population size and species of microflora leading to changes in their secreted metabolites. These changes also hamper communications among the HPA (hypothalamic-pituitary-adrenal), ENS (enteric nervous system), and ANS (autonomic nervous system). A therapeutic intervention that has recently gained attention in improving health and maintaining communication between the gut and the brain is calorie restriction (CR), which also plays a critical role in autophagy and neurogenesis processes. However, its strict regime and lifelong commitment pose challenges. The need is to produce similar beneficial effects of CR without having its rigorous compliance. This led to an exploration of calorie restriction mimetics (CRMs) which could mimic CR's functions without limiting diet, providing long-term health benefits. CRMs ensure the efficient functioning of the GBA through gut bacteria and their metabolites i.e., short-chain fatty acids, bile acids, and neurotransmitters. This is particularly beneficial for elderly individuals, as the GM deteriorates with age and the body's ability to digest the toxic accumulates declines. In this review, we have explored the beneficial effect of CRMs in extending lifespan by enhancing the beneficial bacteria and their effects on metabolite production, physiological conditions, and neurological dysfunctions including neurodegenerative disorders.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486790/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142035141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Screening the active ingredients of plants via molecular docking technology and evaluating their ability to reduce skin photoaging.","authors":"Shiqian Zheng, Rongrong Deng, Gengjiu Huang, Zhiwen Ou, Zhibin Shen","doi":"10.1007/s10522-024-10125-7","DOIUrl":"10.1007/s10522-024-10125-7","url":null,"abstract":"<p><p>The active ingredients of plants were screened by molecular docking technology and the result were verified. According to the verification results of molecular docking, the five active ingredients were combined in equal proportions to form a compound drug. In the HaCaT photoaging model, the effects of the compound drug on antioxidant and senescence-associated secretory phenotype (SASP) factors of the NF-κB and MAPK pathways were studied via SOD and MDA kits, DCFH-DA fluorescent probes and ELISA. In the skin photoaging model, the effects of the compound drug on antioxidants and the SASP factors of the NF-κB and MAPK pathways were studied via SOD, MDA, and CAT kits and ELISA. The results revealed that the compound drug increased SOD activity, decreased the MDA content and intracellular ROS, inhibited IL-6 in the NF-κB pathway, and inhibited MMP-1 and collagen I in the MAPK pathway. The results of HE, Masson and Victoria blue skin staining revealed that the compound drug inhibited abnormal thickening of the epidermis, abnormal breaking and accumulation of collagen fibers and elastic fibers, and maintained their orderly arrangement. Moreover, the results revealed that the compound drug increased SOD, CAT and collagen I, and reduced the MDA content, the SASP factors IL-6 and TNF-α of the NF-κB pathway, and the SASP factors MMP-1 of the MAPK pathway. The above results indicate that the active ingredients of the compound drug screened by molecular docking have the potential to reduce skin photoaging.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chrysin mitigates neuronal apoptosis and impaired hippocampal neurogenesis in male rats subjected to D-galactose-induced brain aging.","authors":"Ram Prajit, Rasa Saenno, Kornrawee Suwannakot, Soraya Kaewngam, Tanaporn Anosri, Nataya Sritawan, Anusara Aranarochana, Apiwat Sirichoat, Wanassanun Pannangrong, Peter Wigmore, Jariya Umka Welbat","doi":"10.1007/s10522-024-10140-8","DOIUrl":"10.1007/s10522-024-10140-8","url":null,"abstract":"<p><p>Oxidative stress-induced neuronal apoptosis is primarily involved in brain aging and impaired hippocampal neurogenesis. Long-term D-galactose administration increases oxidative stress related to brain aging. Chrysin, a subtype of flavonoids, exhibits neuroprotective effects, particularly its antioxidant properties. To elucidate the neuroprotection of chrysin on neuronal apoptosis and an impaired hippocampal neurogenesis relevant to oxidative damage in D-galactose-induced brain aging, male Sprague Dawley rats were allocated into vehicle control, D-galactose, chrysin, and cotreated rats. The rats received their respective treatments daily for 8 weeks. The reactions of scavenging enzymes, protein regulating endogenous antioxidant defense, and anti-apoptotic protein expression were significantly reduced in the hippocampus and prefrontal cortex of the animals receiving D-galactose. Conversely, product of oxidative damage and apoptotic protein expressions were significantly elevated in both cortical areas of the D-galactose group. In hippocampal neurogenesis, significant upregulation of cell cycle arrest and decrease in differentiated protein expression were detected after D-galactose administration. Nevertheless, chrysin supplementation significantly mitigated all negative effects in animals receiving D-galactose. This study demonstrates that chrysin likely attenuates brain aging induced by D-galactose by enhancing scavenging enzyme activities and reducing oxidative stress, neuronal apoptosis, and the impaired hippocampal neurogenesis.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486779/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142280057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity.","authors":"Somayeh Ahmadi, Alka Hasani, Aytak Khabbaz, Vahdat Poortahmasbe, Samaneh Hosseini, Mohammad Yasdchi, Elham Mehdizadehfar, Zahra Mousavi, Roqaiyeh Hasani, Edris Nabizadeh, Javad Nezhadi","doi":"10.1007/s10522-024-10136-4","DOIUrl":"10.1007/s10522-024-10136-4","url":null,"abstract":"<p><p>The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-11-01Epub Date: 2024-08-20DOI: 10.1007/s10522-024-10126-6
Samael Olascoaga, Jorge I Castañeda-Sánchez, Mina Königsberg, Humberto Gutierrez, Norma Edith López-Diazguerrero
{"title":"Oxidative stress-induced gene expression changes in prostate epithelial cells in vitro reveal a robust signature of normal prostatic senescence and aging.","authors":"Samael Olascoaga, Jorge I Castañeda-Sánchez, Mina Königsberg, Humberto Gutierrez, Norma Edith López-Diazguerrero","doi":"10.1007/s10522-024-10126-6","DOIUrl":"10.1007/s10522-024-10126-6","url":null,"abstract":"<p><p>Oxidative stress has long been postulated to play an essential role in aging mechanisms, and numerous forms of molecular damage associated with oxidative stress have been well documented. However, the extent to which changes in gene expression in direct response to oxidative stress are related to actual cellular aging, senescence, and age-related functional decline remains unclear. Here, we ask whether H<sub>2</sub>O<sub>2</sub>-induced oxidative stress and resulting gene expression alterations in prostate epithelial cells in vitro reveal gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease. While a broad range of significant changes observed in the expression of non-coding transcripts implicated in senescence-related responses, we also note an overrepresentation of gene-splicing events among differentially expressed protein-coding genes induced by H<sub>2</sub>O<sub>2</sub>. Additionally, the collective expression of these H<sub>2</sub>O<sub>2</sub>-induced DEGs is linked to age-related pathological dysfunction, with their protein products exhibiting a dense network of protein-protein interactions. In contrast, co-expression analysis of available gene expression data reveals a naturally occurring highly coordinated expression of H<sub>2</sub>O<sub>2</sub>-induced DEGs in normally aging prostate tissue. Furthermore, we find that oxidative stress-induced DEGs statistically overrepresent well-known senescence-related signatures. Our results show that oxidative stress-induced gene expression in prostate epithelial cells in vitro reveals gene regulatory changes typically observed in naturally aging prostate tissue and age-related prostate disease.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-11-01Epub Date: 2024-07-06DOI: 10.1007/s10522-024-10118-6
Shaojun Wang, Hong Yang
{"title":"Low-molecular-weight heparin ameliorates intestinal barrier dysfunction in aged male rats via protection of tight junction proteins.","authors":"Shaojun Wang, Hong Yang","doi":"10.1007/s10522-024-10118-6","DOIUrl":"10.1007/s10522-024-10118-6","url":null,"abstract":"<p><p>The intestinal barrier weakens and chronic gut inflammation occurs in old age, causing age-related illnesses. Recent research shows that low-molecular-weight heparin (LMWH), besides anticoagulation, also has anti-inflammatory and anti-apoptotic effects, protecting the intestinal barrier. This study aims to analyze the effect of LMWH on the intestinal barrier of old male rodents. This study assigned Sprague-Dawley male rats to four groups: young (3 months), young + LMWH, old (20 months), and old + LMWH. The LMWH groups received 1 mg/kg LMWH via subcutaneous injection for 7 days. Optical and transmission electron microscopy (TEM) were used to examine morphological changes in intestinal mucosa due to aging. Intestinal permeability was measured using fluorescein isothiocyanate (FITC)-dextran. ELISA kits were used to measure serum levels of IL-6 and IL-1β, while Quantitative RT-PCR detected their mRNA levels in intestinal tissues. Western blotting and immunohistochemistry (IHC) evaluated the tight junction (TJ) protein levels such as occludin, zonula occludens-1 (ZO-1), and claudin-2. Western blotting assessed the expression of the apoptosis marker cleaved caspase 3, while IHC was used to detect LGR5+ intestinal stem cells. The intestinal permeability of aged rats was significantly higher than that of young rats, indicating significant differences. With age, the protein levels of occludin and ZO-1 decreased significantly, while the level of claudin-2 increased significantly. Meanwhile, our study found that the levels of IL-1β and IL-6 increased significantly with age. LMWH intervention effectively alleviated age-related intestinal barrier dysfunction. In aged rats treated with LMWH, the expression of occludin and ZO-1 proteins in the intestine increased, while the expression of claudin-2 decreased. Furthermore, LMWH administration in aged rats resulted in a decrease in IL-1β and IL-6 levels. LMWH also reduced age-related cleaved caspase3 expression, but IHC showed no difference in LGR5+ intestinal stem cells between groups. Research suggests that LMWH could potentially be a favorable therapeutic choice for age-related diseases associated with intestinal barrier dysfunction, by protecting TJ proteins, reducing inflammation, and apoptosis.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-11-01Epub Date: 2024-08-21DOI: 10.1007/s10522-024-10131-9
Brecht Driesschaert, Lucas Mergan, Cristiano Lucci, Caroline Simon, Dulce Santos, Lies De Groef, Liesbet Temmerman
{"title":"The role of phagocytic cells in aging: insights from vertebrate and invertebrate models.","authors":"Brecht Driesschaert, Lucas Mergan, Cristiano Lucci, Caroline Simon, Dulce Santos, Lies De Groef, Liesbet Temmerman","doi":"10.1007/s10522-024-10131-9","DOIUrl":"10.1007/s10522-024-10131-9","url":null,"abstract":"<p><p>While the main role of phagocytic scavenger cells consists of the neutralization and elimination of pathogens, they also keep the body fluids clean by taking up and breaking down waste material. Since a build-up of waste is thought to contribute to the aging process, these cells become particularly pertinent in the research field of aging. Nevertheless, a direct link between their scavenging functions and the aging process has yet to be established. Integrative approaches involving various model organisms hold promise to elucidate this potential, but are lagging behind since the diversity and evolutionary relationship of these cells across animal species remain unclear. In this perspective, we review the current knowledge associating phagocytic scavenger cells with aging in vertebrate and invertebrate animals, as well as put forward important questions for further exploration. Additionally, we highlight future challenges and propose a constructive approach for tackling them.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142016249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-11-01Epub Date: 2024-07-22DOI: 10.1007/s10522-024-10123-9
A Golubev
{"title":"Invariances in relations between aging, exposure to external hazards, and mortality reflected in life table aging rate (LAR) patterns examined through the lens of generalized Gompertz-Makeham law.","authors":"A Golubev","doi":"10.1007/s10522-024-10123-9","DOIUrl":"10.1007/s10522-024-10123-9","url":null,"abstract":"<p><p>According to the Gompertz law, the age-dependent change in the logarithm of mortality (life-table aging rate, LAR) is equal to the population-averaged age-independent biological aging rate (γ), and LAR would be constant if aging were the only cause of mortality increase. However, LAR is influenced by population exposures to the external hazards. If they were constant, according to the Gompertz-Makeham law (GML), LAR would be below γ at lower ages and asymptotically and monotonically approach γ with increasing age. Actually, LAR trajectories derived from data on mortality in different countries and historical periods feature systematic undulations. In the present investigation, mortality-vs.-age trajectories were modeled based on a generalized GML (gGML). Unlike the canonical GML terms, which are population-specific constants, the respective terms of the gGML are represented with some population-specific functions of age. Invariant in gGML are the modes of translation of these functions into the dependency of mortality on age: linear for population exposure to the irresistible external hazards or exponential for population-averaged ability to withstand the resistible external and internal hazards. Modeling suggests that, at earlier ages, LAR undulations are attributable to changes in population exposures to the former hazards. However, only their unrealistically high levels can produce the transient increase in LAR at about 65 to 90 years. This pervasive undulation of LAR-vs.-age trajectory is rather caused by an increment in γ. Reasons to regard gGML as a genuine natural law, which defines relations between mortality, aging and environment, are discussed.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141733486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mitochondria: fundamental characteristics, challenges, and impact on aging.","authors":"Runyu Liang, Luwen Zhu, Yongyin Huang, Jia Chen, Qiang Tang","doi":"10.1007/s10522-024-10132-8","DOIUrl":"10.1007/s10522-024-10132-8","url":null,"abstract":"<p><p>As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142079061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiogerontologyPub Date : 2024-11-01Epub Date: 2024-07-06DOI: 10.1007/s10522-024-10117-7
Pynskhem Bok Swer, Babiangshisha Kharbuli, Donkupar Syiem, Ramesh Sharma
{"title":"Age-related decline in the expression of BRG1, ATM and ATR are partially reversed by dietary restriction in the livers of female mice.","authors":"Pynskhem Bok Swer, Babiangshisha Kharbuli, Donkupar Syiem, Ramesh Sharma","doi":"10.1007/s10522-024-10117-7","DOIUrl":"10.1007/s10522-024-10117-7","url":null,"abstract":"<p><p>BRG1 (Brahma-related gene 1) is a member of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex which utilizes the energy from ATP hydrolysis for its activity. In addition to its role of regulating the expression of a vast array of genes, BRG1 mediates DNA repair upon genotoxic stress and regulates senescence. During organismal ageing, there is accumulation of unrepaired/unrepairable DNA damage due to progressive breakdown of the DNA repair machinery. The present study investigates the expression level of BRG1 as a function of age in the liver of 5- and 21-month-old female mice. It also explores the impact of dietary restriction on BRG1 expression in the old (21-month) mice. Salient findings of the study are: Real-time PCR and Western blot analyses reveal that BRG1 levels are higher in 5-month-old mice but decrease significantly with age. Dietary restriction increases BRG1 expression in the 21-month-old mice, nearly restoring it to the level observed in the younger group. Similar expression patterns are observed for DNA damage response genes ATM (Ataxia Telangiectasia Mutated) and ATR (Ataxia Telangiectasia and Rad3-related) with the advancement in age and which appears to be modulated by dietary restriction. BRG1 transcriptionally regulates ATM as a function of age and dietary restriction. These results suggest that BRG1, ATM and ATR are downregulated as mice age, and dietary restriction can restore their expression. This implies that dietary restriction may play a crucial role in regulating BRG1 and related gene expression, potentially maintaining liver repair and metabolic processes as mice age.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}