Biochimica et biophysica acta. Biomembranes最新文献

筛选
英文 中文
Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds 抗菌肽和化合物诱导巨型单拉米尔囊泡破裂的过程和机制
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-04-26 DOI: 10.1016/j.bbamem.2024.184330
Md. Masum Billah , Marzuk Ahmed , Md. Zahidul Islam , Masahito Yamazaki
{"title":"Processes and mechanisms underlying burst of giant unilamellar vesicles induced by antimicrobial peptides and compounds","authors":"Md. Masum Billah ,&nbsp;Marzuk Ahmed ,&nbsp;Md. Zahidul Islam ,&nbsp;Masahito Yamazaki","doi":"10.1016/j.bbamem.2024.184330","DOIUrl":"https://doi.org/10.1016/j.bbamem.2024.184330","url":null,"abstract":"<div><p>To clarify the damage of lipid bilayer region in bacterial cell membrane caused by antimicrobial peptides (AMPs) and antimicrobial compounds (AMCs), their interactions with giant unilamellar vesicles (GUVs) of various lipid compositions have been examined. The findings revealed two main causes for the leakage: nanopore formation in the membrane and burst of GUVs. Although GUV burst has been explained previously based on the carpet model, the supporting evidence is limited. In this review, to better clarify the mechanism of GUV burst by AMPs, AMCs, and other membrane-active peptides, we described current knowledge of the conditions, characteristics, and detailed processes of GUV burst and the changes in the shape of the GUVs during burst. We identified several physical factors that affect GUV burst, such as membrane tension, electrostatic interaction, structural changes of GUV membrane such as membrane folding, and oil in the membrane. We also clarified one of the physical mechanisms underlying the instability of lipid bilayers that are associated with leakage in the carpet model. Based on these results, we propose a mechanism underlying some types of GUV burst induced by these substances: the growth of a nanopore to a micropore, resulting in GUV burst.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184330"},"PeriodicalIF":3.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140823973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of VBIT-4 on the functional activity of isolated mitochondria and cell viability VBIT-4 对分离线粒体功能活性和细胞活力的影响
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-04-26 DOI: 10.1016/j.bbamem.2024.184329
Konstantin N. Belosludtsev , Anna I. Ilzorkina , Lyudmila A. Matveeva , Alexander V. Chulkov , Alena A. Semenova , Mikhail V. Dubinin , Natalia V. Belosludtseva
{"title":"Effect of VBIT-4 on the functional activity of isolated mitochondria and cell viability","authors":"Konstantin N. Belosludtsev ,&nbsp;Anna I. Ilzorkina ,&nbsp;Lyudmila A. Matveeva ,&nbsp;Alexander V. Chulkov ,&nbsp;Alena A. Semenova ,&nbsp;Mikhail V. Dubinin ,&nbsp;Natalia V. Belosludtseva","doi":"10.1016/j.bbamem.2024.184329","DOIUrl":"https://doi.org/10.1016/j.bbamem.2024.184329","url":null,"abstract":"<div><p>VBIT-4 is a new inhibitor of the oligomerization of VDAC proteins of the outer mitochondrial membrane preventing the development of oxidative stress, mitochondrial dysfunction, and cell death in various pathologies. However, as a VDAC inhibitor, VBIT-4 may itself cause mitochondrial dysfunction in healthy cells. The article examines the effect of VBIT-4 on the functional activity of rat liver mitochondria and cell cultures. We have demonstrated that high concentrations of VBIT-4 (15–30 μM) suppressed mitochondrial respiration in state 3 and 3U<sub>DNP</sub> driven by substrates of complex I and II. VBIT-4 induced depolarization of organelles fueled by substrates of complex I but not complex II of the respiratory chain. VBIT-4 has been found to inhibit the activity of complexes I, III, and IV of the respiratory chain. Molecular docking demonstrated that VBIT-4 interacts with the rotenone-binding site in complex I with similar affinity. 15–30 μM VBIT-4 caused an increase in H<sub>2</sub>O<sub>2</sub> production in mitochondria, decreased the Ca<sup>2+</sup> retention capacity, but increased the time of Ca<sup>2+</sup>-dependent mitochondrial swelling. We have found that the incubation of breast adenocarcinoma (MCF-7) with 30 μM VBIT-4 for 48 h led to the decrease of the mitochondrial membrane potential, an increase in ROS production and death of MCF-7 cells. The mechanism of action of VBIT-4 on mitochondria and cells is discussed.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184329"},"PeriodicalIF":3.4,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140824036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of stand-alone polar residue on membrane protein stability and structure 独立极性残基对膜蛋白稳定性和结构的影响。
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-04-21 DOI: 10.1016/j.bbamem.2024.184325
Yu-Chu Chang , Zheng Cao , Wai-Ting Chen , Wei-Chun Huang
{"title":"Effects of stand-alone polar residue on membrane protein stability and structure","authors":"Yu-Chu Chang ,&nbsp;Zheng Cao ,&nbsp;Wai-Ting Chen ,&nbsp;Wei-Chun Huang","doi":"10.1016/j.bbamem.2024.184325","DOIUrl":"10.1016/j.bbamem.2024.184325","url":null,"abstract":"<div><p>Helical membrane proteins generally have a hydrophobic nature, with apolar side chains comprising the majority of the transmembrane (TM) helices. However, whenever polar side chains are present in the TM domain, they often exert a crucial role in structural interactions with other polar residues, such as TM helix associations and oligomerization. Moreover, polar residues in the TM region also often participate in protein functions, such as the Schiff base bonding between Lys residues and retinal in rhodopsin-like membrane proteins. Although many studies have focused on these functional polar residues, our understanding of stand-alone polar residues that are energetically unfavored in TM helixes is limited. Here, we adopted bacteriorhodopsin (bR) as a model system and systematically mutated 17 of its apolar Leu or Phe residues to polar Asn. Stability measurements of the resulting mutants revealed that all of these polar substitutions reduced bR stability to various extents, and the extent of destabilization of each mutant bR is also correlated to different structural factors, such as the relative accessible surface area and membrane depth of the mutation site. Structural analyses of these Asn residues revealed that they form sidechain-to-backbone hydrogen bonds that alleviate the unfavorable energetics in hydrophobic and apolar surroundings. Our results indicate that membrane proteins are able to accommodate certain stand-alone polar residues in the TM region without disrupting overall structures.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184325"},"PeriodicalIF":3.4,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140776671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Rich arginine and strong positive charge” antimicrobial protein protamine: From its action on cell membranes to inhibition of bacterial vital functions "富含精氨酸、带强正电荷 "的抗菌蛋白质原胺:从对细胞膜的作用到抑制细菌的生命功能
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-04-16 DOI: 10.1016/j.bbamem.2024.184323
Momoka Ookubo , Yuka Tashiro , Kosuke Asano , Yoshiharu Kamei , Yoshikazu Tanaka , Takayuki Honda , Takeshi Yokoyama , Michiyo Honda
{"title":"“Rich arginine and strong positive charge” antimicrobial protein protamine: From its action on cell membranes to inhibition of bacterial vital functions","authors":"Momoka Ookubo ,&nbsp;Yuka Tashiro ,&nbsp;Kosuke Asano ,&nbsp;Yoshiharu Kamei ,&nbsp;Yoshikazu Tanaka ,&nbsp;Takayuki Honda ,&nbsp;Takeshi Yokoyama ,&nbsp;Michiyo Honda","doi":"10.1016/j.bbamem.2024.184323","DOIUrl":"https://doi.org/10.1016/j.bbamem.2024.184323","url":null,"abstract":"<div><p>Protamine, an antimicrobial protein derived from salmon sperm with a molecular weight of approximately 5 kDa, is composed of 60–70 % arginine and is a highly charged protein. Here, we investigated the mechanism of antimicrobial action of protamine against <em>Cutibacterium acnes</em> (<em>C. acnes</em>) focusing on its rich arginine content and strong positive charge. Especially, we focused on the attribution of dual mechanisms of antimicrobial protein, including membrane disruption or interaction with intracellular components. We first determined the dose-dependent antibacterial activity of protamine against <em>C. acnes</em>. In order to explore the interaction between bacterial membrane and protamine, we analyzed cell morphology, zeta potential, membrane permeability, and the composition of membrane fatty acid. In addition, the localization of protamine in bacteria was observed using fluorescent-labeled protamine. For investigation of the intracellular targets of protamine, bacterial translation was examined using a cell-free translation system. Based on our results, the mechanism of the antimicrobial action of protamine against <em>C. acnes</em> is as follows: 1) electrostatic interactions with the bacterial cell membrane; 2) self-internalization into the bacterial cell by changing the composition of the bacterial membrane; and 3) inhibition of bacterial growth by blocking translation inside the bacteria. However, owing to its strong electric charge, protamine can also interact with DNA, RNA, and other proteins inside the bacteria, and may inhibit various bacterial life processes beyond the translation process.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184323"},"PeriodicalIF":3.4,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140557458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioconcentration potential of ionic liquids: New data on membrane partitioning and its comparison with predictions obtained by COSMOmic 离子液体的生物浓缩潜力:膜分配的新数据及其与 COSMOmic 预测结果的比较
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-04-06 DOI: 10.1016/j.bbamem.2024.184320
Jakub Maculewicz , Anna Białk-Bielińska , Dorota Kowalska , Piotr Stepnowski , Stefan Stolte , Stephan Beil , Agnieszka Gajewicz-Skretna , Joanna Dołżonek
{"title":"Bioconcentration potential of ionic liquids: New data on membrane partitioning and its comparison with predictions obtained by COSMOmic","authors":"Jakub Maculewicz ,&nbsp;Anna Białk-Bielińska ,&nbsp;Dorota Kowalska ,&nbsp;Piotr Stepnowski ,&nbsp;Stefan Stolte ,&nbsp;Stephan Beil ,&nbsp;Agnieszka Gajewicz-Skretna ,&nbsp;Joanna Dołżonek","doi":"10.1016/j.bbamem.2024.184320","DOIUrl":"https://doi.org/10.1016/j.bbamem.2024.184320","url":null,"abstract":"<div><p>Ionic liquids (ILs) have recently gained significant attention in both the scientific community and industry, but there is a limited understanding of the potential risks they might pose to the environment and human health, including their potential to accumulate in organisms. While membrane and storage lipids have been considered as primary sorption phases driving bioaccumulation, in this study we used an <em>in vitro</em> tool known as solid-supported lipid membranes (SSLMs) to investigate the affinity of ILs to membrane lipid - phosphatidylcholine and compare the results with an existing <em>in silico</em> model. Our findings indicate that ILs may have a strong affinity for the lipids that form cell membranes, with the key factor being the length of the cation's side chain. For quaternary ammonium cations, increase in membrane affinity (logMA) was observed from 3.45 ± 0.06 at 10 carbon atoms in chain to 4.79 ± 0.06 at 14 carbon atoms. We also found that the anion can significantly affect the membrane partitioning of the cation, even though the anions themselves tend to have weaker interactions with phospholipids than the cations of ILs. For 1-methyl-3-octylimidazolium cation the presence of tricyanomethanide anion caused increase in logMA to 4.23 ± 0.06. Although some of our data proved to be consistent with predictions made by the COSMO<em>mic</em> model, there are also significant discrepancies. These results suggest that further research is needed to improve our understanding of the mechanisms and structure-activity relationships involved in ILs bioconcentration and to develop more accurate predictive models.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184320"},"PeriodicalIF":3.4,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140631230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential effects of theasinensins and epigallocatechin-3-O-gallate on phospholipid bilayer structure and liposomal aggregation 表没食子儿茶素-3-O-棓酸盐和表没食子儿茶素-3-O-棓酸盐对磷脂双分子层结构和脂质体聚集的不同影响
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-04-04 DOI: 10.1016/j.bbamem.2024.184312
Asako Narai-Kanayama , Sumio Hayakawa , Takayuki Yoshino , Futa Honda , Hiroko Matsuda , Yumiko Oishi
{"title":"Differential effects of theasinensins and epigallocatechin-3-O-gallate on phospholipid bilayer structure and liposomal aggregation","authors":"Asako Narai-Kanayama ,&nbsp;Sumio Hayakawa ,&nbsp;Takayuki Yoshino ,&nbsp;Futa Honda ,&nbsp;Hiroko Matsuda ,&nbsp;Yumiko Oishi","doi":"10.1016/j.bbamem.2024.184312","DOIUrl":"https://doi.org/10.1016/j.bbamem.2024.184312","url":null,"abstract":"<div><p>(−)-Epigallocatechin-3-<em>O</em>-gallate (EGCg), the major catechin responsible for the health-enhancing and disease-preventive effects of green tea, is susceptible to auto-oxidation at physiological pH levels. However, whether the oxidized EGCg resulting from its oral consumption possesses any bioactive functions remains unclear. This study presents a differential analysis of intact and oxidized EGCg regarding their interactions with phosphatidylcholine liposomes, serving as a simple biomembrane model. In the presence of ascorbic acid, pre-oxidized EGCg induced liposomal aggregation in a dose-dependent manner, whereas intact EGCg did not. Toxicity evaluation using calcein-loaded liposomes revealed that liposomal aggregation is associated with minimal membrane damage. Through fractionation of the oxidized EGCg sample, the fraction containing theasinensins showed high liposomal aggregation activity. Overall, these results suggest that oxidatively condensed EGCg dimers may stimulate various cells by altering the plasma membrane in a manner different from that of EGCg monomers.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184312"},"PeriodicalIF":3.4,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140534951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores 用长度适宜的酰基链修饰 RTX 结构域帽,可形成功能性溶血素孔
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-04-01 DOI: 10.1016/j.bbamem.2024.184311
Anna Lepesheva , Michaela Grobarcikova , Adriana Osickova , David Jurnecka , Sarka Knoblochova , Monika Cizkova , Radim Osicka , Peter Sebo , Jiri Masin
{"title":"Modification of the RTX domain cap by acyl chains of adapted length rules the formation of functional hemolysin pores","authors":"Anna Lepesheva ,&nbsp;Michaela Grobarcikova ,&nbsp;Adriana Osickova ,&nbsp;David Jurnecka ,&nbsp;Sarka Knoblochova ,&nbsp;Monika Cizkova ,&nbsp;Radim Osicka ,&nbsp;Peter Sebo ,&nbsp;Jiri Masin","doi":"10.1016/j.bbamem.2024.184311","DOIUrl":"https://doi.org/10.1016/j.bbamem.2024.184311","url":null,"abstract":"<div><p>The acylated pore-forming <u>R</u>epeats in <u>T</u>o<u>X</u>in (RTX) cytolysins α-hemolysin (HlyA) and adenylate cyclase toxin (CyaA) preferentially bind to β<sub>2</sub> integrins of myeloid leukocytes but can also promiscuously bind and permeabilize cells lacking the β<sub>2</sub> integrins. We constructed a HlyA<sub>1</sub><sub>–</sub><sub>563</sub>/CyaA<sub>860</sub><sub>–</sub><sub>1706</sub> chimera that was acylated either by the toxin-activating acyltransferase CyaC, using sixteen carbon-long (C16) acyls, or by the HlyC acyltransferase using fourteen carbon-long (C14) acyls. Cytolysin assays with the C16- or C14-acylated HlyA/CyaA chimeric toxin revealed that the RTX domain of CyaA can functionally replace the RTX domain of HlyA only if it is modified by C16-acyls on the Lys983 residue of CyaA. The C16-monoacylated HlyA/CyaA chimera was as pore-forming and cytolytic as native HlyA, whereas the C14-acylated chimera exhibited very low pore-forming activity. Hence, the capacity of the RTX domain of CyaA to support the insertion of the N-terminal pore-forming domain into the target cell membrane, and promote formation of toxin pores, strictly depends on the modification of the Lys983 residue by an acyl chain of adapted length.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184311"},"PeriodicalIF":3.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005273624000427/pdfft?md5=07a9ac943f2962b725a6f273cf3b0e95&pid=1-s2.0-S0005273624000427-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fumonisin B1 protects against long-chained polyunsaturated fatty acid-induced cell death in HepG2 cells – implications for cancer promotion 伏马菌素 B1 可防止长链多不饱和脂肪酸诱导的 HepG2 细胞死亡--对癌症的促进作用。
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-03-11 DOI: 10.1016/j.bbamem.2024.184310
Sylvia Riedel , Stefan Abel , Hester-Mari Burger , Sonja Swanevelder , Wentzel C.A. Gelderblom
{"title":"Fumonisin B1 protects against long-chained polyunsaturated fatty acid-induced cell death in HepG2 cells – implications for cancer promotion","authors":"Sylvia Riedel ,&nbsp;Stefan Abel ,&nbsp;Hester-Mari Burger ,&nbsp;Sonja Swanevelder ,&nbsp;Wentzel C.A. Gelderblom","doi":"10.1016/j.bbamem.2024.184310","DOIUrl":"10.1016/j.bbamem.2024.184310","url":null,"abstract":"<div><p>Fumonisin B<sub>1</sub> (FB<sub>1</sub>), a food-borne mycotoxin, is a cancer promoter in rodent liver and augments proliferation of initiated cells while inhibiting the growth of normal hepatocytes by disrupting lipid biosynthesis at various levels. HepG2 cancer cells exhibited resistance to FB<sub>1</sub>-induced toxic effects presumably due to their low content of polyunsaturated fatty acids (PUFA) even though FB<sub>1</sub>-typical lipid changes were observed, e.g. significantly increased phosphatidylethanolamine (PE), decreased sphingomyelin and cholesterol content, increased sphinganine (Sa) and sphinganine/sphingosine ratio, increased C18:1ω-9, decreased C20:4ω-6 content in PE and decreased C20:4ω-6_PC/PE ratio. Increasing PUFA content of HepG2 cells with phosphatidylcholine (PC) vesicles containing C20:4ω-6 (SAPC) or C22:6ω-3 (SDPC) disrupted cell survival, cellular redox status and induced oxidative stress and apoptosis. A partially protective effect of FB<sub>1</sub> was evident in PUFA-enriched HepG2 cells which may be related to the FB<sub>1</sub>-induced reduction in oxidative stress and the disruption of key cell membrane constituents indicative of a resistant lipid phenotype. Interactions between different ω-6 and ω-3 PUFA, membrane constituents including cholesterol, and the glycerophospho- and sphingolipids and FB<sub>1</sub> in this cell model provide further support for the resistant lipid phenotype and its role in the complex cellular effects underlying the cancer promoting potential of the fumonisins.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184310"},"PeriodicalIF":3.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005273624000415/pdfft?md5=9160b5c0d6b6eee7ea5ec7b048c33dd6&pid=1-s2.0-S0005273624000415-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140118646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perception and protection: The role of Bce-modules in antimicrobial peptide resistance 感知与保护:Bce 模块在抗菌肽耐药性中的作用。
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-03-07 DOI: 10.1016/j.bbamem.2024.184309
Benjamin J. Orlando
{"title":"Perception and protection: The role of Bce-modules in antimicrobial peptide resistance","authors":"Benjamin J. Orlando","doi":"10.1016/j.bbamem.2024.184309","DOIUrl":"10.1016/j.bbamem.2024.184309","url":null,"abstract":"<div><p>Continual synthesis and remodeling of the peptidoglycan layer surrounding Gram-positive cells is essential for their survival. Diverse antimicrobial peptides target the lipid intermediates involved in this process. To sense and counteract assault from antimicrobial peptides, low G + C content gram-positive bacteria (Firmicutes) have evolved membrane protein complexes known as Bce-modules. These complexes consist minimally of an ABC transporter and a two-component system that work in tandem to perceive and confer resistance against antimicrobial peptides. In this mini-review I highlight recent breakthroughs in comprehending the structure and function of these unusual membrane protein complexes, with a particular focus on the BceAB-RS system present in <em>Bacillus subtilis.</em></p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 4","pages":"Article 184309"},"PeriodicalIF":3.4,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0005273624000403/pdfft?md5=c25ce139367a5c18391a8ee8549081ab&pid=1-s2.0-S0005273624000403-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140068139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coordinated regulation of phosphatidylinositol 4-phosphate and phosphatidylserine levels by Osh4p and Osh5p is an essential regulatory mechanism in autophagy Osh4p和Osh5p对4-磷酸肌醇磷脂和磷脂酰丝氨酸水平的协调调控是自噬过程中必不可少的调控机制。
IF 3.4 3区 生物学
Biochimica et biophysica acta. Biomembranes Pub Date : 2024-03-02 DOI: 10.1016/j.bbamem.2024.184308
Moe Muramoto , Nanaru Mineoka , Kayoko Fukuda , Sayuri Kuriyama , Tatsunori Masatani , Akikazu Fujita
{"title":"Coordinated regulation of phosphatidylinositol 4-phosphate and phosphatidylserine levels by Osh4p and Osh5p is an essential regulatory mechanism in autophagy","authors":"Moe Muramoto ,&nbsp;Nanaru Mineoka ,&nbsp;Kayoko Fukuda ,&nbsp;Sayuri Kuriyama ,&nbsp;Tatsunori Masatani ,&nbsp;Akikazu Fujita","doi":"10.1016/j.bbamem.2024.184308","DOIUrl":"10.1016/j.bbamem.2024.184308","url":null,"abstract":"<div><p>Macroautophagy (hereafter autophagy) is an intracellular degradative pathway in budding yeast cells. Certain lipid types play essential roles in autophagy; yet the precise mechanisms regulating lipid composition during autophagy remain unknown. Here, we explored the role of the Osh family proteins in the modulating lipid composition during autophagy in budding yeast. Our results showed that <em>osh1</em>-<em>osh7</em>∆ deletions lead to autophagic dysfunction, with impaired GFP-Atg8 processing and the absence of autophagosomes and autophagic bodies in the cytosol and vacuole, respectively. Freeze-fracture electron microscopy (EM) revealed elevated phosphatidylinositol 4-phosphate (PtdIns(4)P) levels in cytoplasmic and luminal leaflets of autophagic bodies and vacuolar membranes in all deletion mutants. Phosphatidylserine (PtdSer) levels were significantly decreased in the autophagic bodies and vacuolar membranes in <em>osh4</em>∆ and <em>osh5</em>∆ mutants, whereas no significant changes were observed in other <em>osh</em> deletion mutants. Furthermore, we identified defects in autophagic processes in the <em>osh4</em>∆ and <em>osh5</em>∆ mutants, including rare autophagosome formation in the <em>osh5</em>∆ mutant and accumulation of autophagic bodies in the vacuole in the <em>osh4</em>∆ mutant, even in the absence of the proteinase inhibitor PMSF. These findings suggest that Osh4p and Osh5p play crucial roles in the transport of PtdSer to autophagic bodies and autophagosome membranes, respectively. The precise control of lipid composition in the membranes of autophagosomes and autophagic bodies by Osh4p and Osh5p represents an important regulatory mechanism in autophagy.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 4","pages":"Article 184308"},"PeriodicalIF":3.4,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信