{"title":"在 MS 通道激活范围内施加压力可显著增强两性霉素 B 通道的活性","authors":"Tammy Haro-Reyes, Iván Ortega-Blake","doi":"10.1016/j.bbamem.2024.184326","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanism of Amphotericin B at the membrane is still subject of debate, with the prevailing hypothesis being the formation of pores. The activity of these pores is influenced by various factors. Recently aggregation in solution and insertion in the membrane had been highlighted as crucial for action of the drug</p><p>Here we investigated the effect of applied pressure on the activity of Amphotericin B. Our findings demonstrate that applied pressure of 50 mmHg is sufficient to enhance the activity.</p><p>We interpreted the results as supporting the idea that pressure fractures the membrane and promotes the insertion of the polyene</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notable enhancement of Amphotericin B channel activity by applied pressures in the range of MS channel activation\",\"authors\":\"Tammy Haro-Reyes, Iván Ortega-Blake\",\"doi\":\"10.1016/j.bbamem.2024.184326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanism of Amphotericin B at the membrane is still subject of debate, with the prevailing hypothesis being the formation of pores. The activity of these pores is influenced by various factors. Recently aggregation in solution and insertion in the membrane had been highlighted as crucial for action of the drug</p><p>Here we investigated the effect of applied pressure on the activity of Amphotericin B. Our findings demonstrate that applied pressure of 50 mmHg is sufficient to enhance the activity.</p><p>We interpreted the results as supporting the idea that pressure fractures the membrane and promotes the insertion of the polyene</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273624000579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624000579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
两性霉素 B 在膜上的作用机制仍有争议,目前流行的假设是形成孔隙。这些孔的活性受多种因素的影响。在这里,我们研究了施加压力对两性霉素 B 活性的影响。我们的研究结果表明,施加 50 mmHg 的压力足以提高两性霉素 B 的活性。
Notable enhancement of Amphotericin B channel activity by applied pressures in the range of MS channel activation
The mechanism of Amphotericin B at the membrane is still subject of debate, with the prevailing hypothesis being the formation of pores. The activity of these pores is influenced by various factors. Recently aggregation in solution and insertion in the membrane had been highlighted as crucial for action of the drug
Here we investigated the effect of applied pressure on the activity of Amphotericin B. Our findings demonstrate that applied pressure of 50 mmHg is sufficient to enhance the activity.
We interpreted the results as supporting the idea that pressure fractures the membrane and promotes the insertion of the polyene