Different lateral packing stress in acyl chains alters KcsA orientation and structure in lipid membranes

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Eri Saki H. Hayakawa , Misuzu Ueki , Elmukhtar Alhatmi , Shigetoshi Oiki , Fuyuki Tokumasu , Drake C. Mitchell , Masayuki Iwamoto
{"title":"Different lateral packing stress in acyl chains alters KcsA orientation and structure in lipid membranes","authors":"Eri Saki H. Hayakawa ,&nbsp;Misuzu Ueki ,&nbsp;Elmukhtar Alhatmi ,&nbsp;Shigetoshi Oiki ,&nbsp;Fuyuki Tokumasu ,&nbsp;Drake C. Mitchell ,&nbsp;Masayuki Iwamoto","doi":"10.1016/j.bbamem.2024.184338","DOIUrl":null,"url":null,"abstract":"<div><p>The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-<em>sn</em>-glycero-3-phospho-(1′-rac-glycerol) (POPG, 16:0–18:1 PG) and 1-palmitoyl-2-arachidonoyl-<em>sn</em>-glycero-3-phospho-(1′-rac-glycerol) (PAPG, 16:0–20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K<sup>+</sup> channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at <em>sn</em>-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624000695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG, 16:0–18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (PAPG, 16:0–20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.

Abstract Image

酰基链中不同的横向堆积应力改变了脂膜中 KcsA 的取向和结构。
膜中各种固有脂质的分子结构调节着脂质与蛋白质之间的相互作用。这些具有独特体积的不同脂质结构会在脂膜中产生不同的脂质分子堆积应力/侧压力。大多数研究都使用磷脂酰胆碱和磷脂酰乙醇胺 (PE),它们是真核生物细胞膜的主要磷脂。相比之下,革兰氏阴性或阳性细菌的细胞膜主要由磷脂酰甘油(PG)和 PE 组成,而 PG 中各酰基链在分子水平上的物理和热力学特性仍未得到解决。在这项研究中,我们使用 1-棕榈酰-2-油酰基-sn-甘油-3-磷酸-(1'-rac-甘油)(POPG,16:0-18:1 PG)和 1-棕榈酰-2-丙烯酰基-sn-甘油-3-磷酸-(1'-rac-甘油)(PAPG,16:0-20:4 PG)制备了带有杆状荧光探针 DPH 的脂质双分子层(脂质体)。我们通过测定 DPH 在 POPG 或 PAPG 双层中的旋转自由度来测量脂质的堆积条件。此外,我们还研究了嵌入 POPG 或 PAPG 膜中的不同单酰基链对 K+ 通道(KcsA)结构的影响。结果表明,单酰基链中 sn-2 处的双键数目和碳链长度的不同会影响膜的理化性质以及 KcsA 的结构和取向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信