Nikolas F Ewasechko, David M Curran, Ken Yu Khaw, Anthony B Schryvers
{"title":"How prevalent are lactoferrin receptors in Gram-negative bacteria?","authors":"Nikolas F Ewasechko, David M Curran, Ken Yu Khaw, Anthony B Schryvers","doi":"10.1139/bcb-2024-0180","DOIUrl":"10.1139/bcb-2024-0180","url":null,"abstract":"<p><p>Surface receptors in Gram-negative bacteria that bind and extract iron from the host glycoproteins transferrin (Tf) or lactoferrin (Lf) was discovered 35 years ago in pathogenic <i>Neisseria</i> species and subsequently was discovered in other pathogens of humans and food production animals. These bacterial species reside exclusively on the mucosal surfaces of the respiratory or genitourinary tract of their mammalian host and rely on their host specific Tf and Lf receptors to acquire iron for survival. Since the specificity of the bacterial Tf receptors was shown to be due to selective pressures on the host Tf, their presence in bacteria that reside in both mammals and birds indicates that they arose over 320 million years ago. Once Lf arose in mammals due to a gene duplication event, Lf receptors subsequently arose from Tf receptors. The focus on pathogens for discovery of these receptors has led to a limited understanding of how prevalent the Tf and Lf receptors are in commensal species and raises the question whether they are present in additional bacterial lineages. Since the Lf receptor provides a secondary iron acquisition system plus can provide protection from cationic peptides its presence varies in bacterial lineages.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-12"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142943602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ed Cha, Sung Ho Hong, Vy La, Pranav Madabhushi, Darren Teramoto, Cameron Fung, Finosh G Thankam
{"title":"Ischemia-induced expression status of cofilin 1, CRSP2, HSP90, HSP27, and IL8 in epicardial adipose tissue and single cell transcriptomic profiling of stromal cells.","authors":"Ed Cha, Sung Ho Hong, Vy La, Pranav Madabhushi, Darren Teramoto, Cameron Fung, Finosh G Thankam","doi":"10.1139/bcb-2024-0210","DOIUrl":"10.1139/bcb-2024-0210","url":null,"abstract":"<p><p>Epicardial adipose tissue (EAT) is a rich source of EAT-derived stromal cells (EATDS), which possess regenerative potential. CRSP2, HSP27, IL8, HSP90, and Cofilin 1 were detected in the secretome of left ventricular stromal cells under ischemia challenge. However, the association of these genes in the EAT and EATDS remain understudied. We aim to assess the status of cofilin 1, CRSP2, HSP27, IL8, and HSP90 in the EAT of myocardial infarction (MI) and coronary artery bypass graft (CABG) swine models and in vitro stimulated ischemic EATDS. Expression status of these proteins in EAT were assessed by immunostaining, and in EATDS using qRT-PCR, immunostaining, and Western blot. EATDS phenotyping was performed using sc-RNAseq analysis. Cofilin 1 was increased while the other four genes were decreased in the CABG. IL8 and HSP90 were increased, while CRSP2, HSP27, and cofilin 1 were decreased in the MI group. Similar trend was displayed in the expression of these genes in EATDS. Additionally, EATDS displayed versatile phenotypes at single cell resolution based on the differential expression of various gene signatures. The findings revealed novel insights into EAT/EATDS biology and further understanding regarding the EATDS sub-phenotypes would open novel avenues in translational cardiology.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-15"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mojgan Rastegar, Hans-Joachim Wieden, James R Davie
{"title":"Proceedings of the Canadian Society for Molecular Biosciences (CSMB) 2024 Conference - Gene Regulation: From Cells to Systems.","authors":"Mojgan Rastegar, Hans-Joachim Wieden, James R Davie","doi":"10.1139/bcb-2025-0146","DOIUrl":"10.1139/bcb-2025-0146","url":null,"abstract":"<p><p>The 67th Canadian Society for Molecular Biosciences (CSMB) Annual Conference took place in Winnipeg, Manitoba, from 6 May to 8 May 2024, at the University of Manitoba, Winnipeg. The conference theme \"Gene Regulation: From Cells to Systems\" was selected to reflect the breadth and multidisciplinary nature of CSMB's membership and to facilitate interactions among scientists and researchers across different disciplines and with diverse research programs and approaches. This meeting attracted registered participants from provinces across Canada and the USA. The objective of this meeting was to promote the inclusive dissemination, conversation, and discussions of molecular biosciences research, in different areas of molecular biosciences covering a wide range of topics in basic science and health-related research subjects such as neuroscience, cancer biology, immunology, physiology, bacterial systems, RNA biology, protein homeostasis, cellular metabolism and cell death mechanisms, neurobiology and neurogenetics, epigenetics, chromatin biology, environmental influence, stem cell biology, and genome-wide studies. This meeting provided a discussion opportunity for molecular bioscience researchers to develop innovative and novel strategies and collaborations for biomedical and translational research.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":"103 ","pages":"1-3"},"PeriodicalIF":2.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144301117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Divergent ERα co-factor landscapes in gynecological cancers: implications for disease progression and therapy.","authors":"Jenna Grindeland, Jasper Yang, Jerome Yang, Motoki Takaku, Archana Dhasarathy","doi":"10.1139/bcb-2025-0158","DOIUrl":"10.1139/bcb-2025-0158","url":null,"abstract":"<p><p>Estrogen receptor alpha (ERα) is an established biomarker for breast tumors, the loss of which is associated with poor cancer progression. Over 70% of breast cancers express ERα and targeting this protein has helped stem the progress of breast cancer. Therefore, it is paradoxical that only a small fraction of patients with ovarian and uterine cancers, which express ERα, are insensitive to antiestrogenic therapies. We propose the hypothesis that ERα association with different cofactors dictates the susceptibility of these cancers to therapies. To support this hypothesis, we analyzed data from cBioportal patient samples and showed that a strong positive correlation exists between ERα and its cofactors GATA3 and FOXA1 in breast cancer, but not in ovarian and uterine cancers. We further show that ERα genomic localization differs in the three cancer types, using available ChIP-seq datasets. Together, our analyses suggest that both localization and the nature of co-factors might be relevant for driving ERα-dependent cancer progression in different cell environments. We further discuss potential mechanisms for these differences in this commentary.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"1-14"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144793372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TGFB1-mediated autophagy facilitates oxaliplatin resistance in stomach adenocarcinoma.","authors":"Qihua Xu, Sheng Hu, Qilin Zhang, Huijun Zhang, Jianfeng Liu, Ying Zhou, Tianning Tian, Bingling Liao","doi":"10.1139/bcb-2025-0085","DOIUrl":"https://doi.org/10.1139/bcb-2025-0085","url":null,"abstract":"<p><p>Increasing evidence has indicated that transforming growth factor beta 1 (TGFB1) is engaged in tumorigenesis and progression. Nevertheless, the underlying role and mechanism of TGFB1 in stomach adenocarcinoma (STAD) chemotherapy remains unknown. TGFB1 levels in various types of cancers were first analyzed by the TCGA database. Next, the degree of cellular damage, apoptosis and autophagy were detected by lactate dehydrogenase kit, flow cytometry, autophagy fluorescence analysis, and Western blot assay. The gene highly correlated with TGFB1 expression was searched by LinkedOmics and KEGG. We disclosed TGFB1 was enhanced in STAD. Besides, TGFB1 was remarkably higher in STAD patients in oxaliplatin (OXA) chemoresistant group than sensitive group. Additionally, the half maximal inhibitory concentration (IC50) values of OXA-resistant cells were markedly elevated. Furthermore, TGFB1 reduced AGS-OXA and HGC27-OXA cell injury, inhibited apoptosis and induced cellular autophagy. The addition of the autophagy inhibitor 3-methyladenine hindered this phenomenon. Further studies revealed that muscle RAS oncogene homolog (MRAS) is a downstream target gene of TGFB1. TGFB1 accelerated MRAS level in OXA cells, and MRAS knockdown reversed the effects of TGFB1 on OXA cell function. TGFB1 induces cellular autophagy via MRAS, thereby promoting STAD OXA resistance.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":"103 ","pages":"1-10"},"PeriodicalIF":2.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145237841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Establishing validated RT-qPCR workflow for the analysis of oligodendrocyte gene expression in the developing murine brain.","authors":"Samantha Smith, Emma R Swan, Kendra L Furber","doi":"10.1139/bcb-2024-0088","DOIUrl":"10.1139/bcb-2024-0088","url":null,"abstract":"<p><p>Myelination is essential for the proper conduction of impulses across neuronal networks. Mature, myelinating glia differentiate from progenitor cells through distinct stages that correspond to oligodendrocyte-specific gene expression markers. Reverse transcription quantiatative PCR (RT-qPCR) is a common technique used to quantify gene expression across cell development; however, a lack of standardization and transparency in methodology may lead to irreproducible data. Here, we have designed and validated RT-qPCR assays for oligodendrocyte genes and reference genes in the developing C57BL6/J mouse brain that align with the MIQE guidelines, including quality controls for primer specificity, temperature dependence, and efficiency. A panel of eight commonly used reference genes was ranked using a series of reference gene stability methods that consistently identified <i>Gapdh, Sdha, Hmbs, Hprt1</i>, and <i>Pgk1</i> as the top candidates for normalization across brain regions. In the cerebrum, myelin genes peaked in expression at postnatal day 21, which corresponds to the peak of developmental myelination. The gene expression patterns from the brain homogenate were in agreement with previously reported RNA-seq and microarray profiles from oligodendrocyte lineage cells. The validated RT-qPCR assays begin to build a framework for future investigation into the molecular mechanisms that regulate myelination in mouse models of brain development, aging, and disease.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"492-505"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric Lécuyer, Martin Sauvageau, Ute Kothe, Peter J Unrau, Masad J Damha, Jonathan Perreault, Sherif Abou Elela, Mark A Bayfield, Julie M Claycomb, Michelle S Scott
{"title":"Canada's contributions to RNA research: past, present, and future perspectives.","authors":"Eric Lécuyer, Martin Sauvageau, Ute Kothe, Peter J Unrau, Masad J Damha, Jonathan Perreault, Sherif Abou Elela, Mark A Bayfield, Julie M Claycomb, Michelle S Scott","doi":"10.1139/bcb-2024-0176","DOIUrl":"10.1139/bcb-2024-0176","url":null,"abstract":"<p><p>The field of RNA research has provided profound insights into the basic mechanisms modulating the function and adaption of biological systems. RNA has also been at the center stage in the development of transformative biotechnological and medical applications, perhaps most notably was the advent of mRNA vaccines that were critical in helping humanity through the Covid-19 pandemic. Unbeknownst to many, Canada boasts a diverse community of RNA scientists, spanning multiple disciplines and locations, whose cutting-edge research has established a rich track record of contributions across various aspects of RNA science over many decades. Through this position paper, we seek to highlight key contributions made by Canadian investigators to the RNA field, via both thematic and historical viewpoints. We also discuss initiatives underway to organize and enhance the impact of the Canadian RNA research community, particularly focusing on the creation of the not-for-profit organization RNA Canada ARN. Considering the strategic importance of RNA research in biology and medicine, and its considerable potential to help address major challenges facing humanity, sustained support of this sector will be critical to help Canadian scientists play key roles in the ongoing RNA revolution and the many benefits this could bring about to Canada.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"472-491"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142340303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shehab Eid, Seojin Lee, Claire E Verkuyl, Dustin Almanza, Joseph Hanna, Sandra Shenouda, Ari Belotserkovsky, Wenda Zhao, Joel C Watts
{"title":"The importance of prion research.","authors":"Shehab Eid, Seojin Lee, Claire E Verkuyl, Dustin Almanza, Joseph Hanna, Sandra Shenouda, Ari Belotserkovsky, Wenda Zhao, Joel C Watts","doi":"10.1139/bcb-2024-0018","DOIUrl":"10.1139/bcb-2024-0018","url":null,"abstract":"<p><p>Over the past four decades, prion diseases have received considerable research attention owing to their potential to be transmitted within and across species as well as their consequences for human and animal health. The unprecedented nature of prions has led to the discovery of a paradigm of templated protein misfolding that underlies a diverse range of both disease-related and normal biological processes. Indeed, the \"prion-like\" misfolding and propagation of protein aggregates is now recognized as a common underlying disease mechanism in human neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and the prion principle has led to the development of novel diagnostic and therapeutic strategies for these illnesses. Despite these advances, research into the fundamental biology of prion diseases has declined, likely due to their rarity and the absence of an acute human health crisis. Given the past translational influence, continued research on the etiology, pathogenesis, and transmission of prion disease should remain a priority. In this review, we highlight several important \"unsolved mysteries\" in the prion disease research field and how solving them may be crucial for the development of effective therapeutics, preventing future outbreaks of prion disease, and understanding the pathobiology of more common human neurodegenerative disorders.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"448-471"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis.","authors":"Mu-Yao Tang, Hao Xie, Jin-Tao Tao, Chun Zhang, Yao-Hua Luo, Cong Zhang, Si-Qin Peng, Lin-Xi Xie, Wen-Bo Lv, Chi Zhang, Liang Huang","doi":"10.1139/bcb-2024-0053","DOIUrl":"10.1139/bcb-2024-0053","url":null,"abstract":"<p><p>Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"418-429"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141625850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luigi Rosa, Antimo Cutone, Giusi Ianiro, Piera Valenti, Rosalba Paesano
{"title":"Lactoferrin in the treatment of interstitial cystitis: a retrospective pilot study.","authors":"Luigi Rosa, Antimo Cutone, Giusi Ianiro, Piera Valenti, Rosalba Paesano","doi":"10.1139/bcb-2024-0036","DOIUrl":"10.1139/bcb-2024-0036","url":null,"abstract":"<p><p>Interstitial cystitis (IC), defined as a painful bladder syndrome (PBS), is a chronic condition that manifests itself as a suprapubic pain associated with an enhancing of frequency/urgency of urination, and for which there is no cure. Here, we present a retrospective pilot study on women affected from IC/PBS and treated with bovine lactoferrin (bLf). A total of 31 women, affected (20) or unaffected (11) from hereditary thrombophilia (HT), presented the median of 6 episodes of IC/PBS during the 6 months before the study. Treatment consisted of 17 weeks of orally administered Valpalf<sup>®</sup> capsules, containing bLf plus sodium bicarbonate and citrate. Out of 31 patients, only 3 women had one episode of IC/PBS during the follow-up period, while no episode was observed in 28 women. In the HT group, a significant decrease in both serum IL-6 and D-dimers was found after Valpalf<sup>®</sup> treatment. Moreover, in Valpalf<sup>®</sup>-treated women, cystoscopy revealed a global improvement in the appearance of the bladder, especially in term of inflammation/irritation and presence of Hunner ulcers. Even if our results must be corroborated by randomized double-blinded controlled trials on a larger number of patients, our observations indicate that bLf treatment is efficient in relieving IC/PBS symptoms, without side effects.</p>","PeriodicalId":8775,"journal":{"name":"Biochemistry and Cell Biology","volume":" ","pages":"506-514"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}