{"title":"Fecal microbiota transplantation attenuates Alzheimer's disease symptoms in APP/PS1 transgenic mice via inhibition of the TLR4-MyD88-NF-κB signaling pathway-mediated inflammation.","authors":"Xiang Li, Qingyong Ding, Xinxin Wan, Qilong Wu, Shiqing Ye, Yongliang Lou","doi":"10.1186/s12993-024-00265-8","DOIUrl":"10.1186/s12993-024-00265-8","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a prevalent and progressive neurodegenerative disorder that is the leading cause of dementia. The underlying mechanisms of AD have not yet been completely explored. Neuroinflammation, an inflammatory response mediated by certain mediators, has been exhibited to play a crucial role in the pathogenesis of AD. Additionally, disruption of the gut microbiota has been found to be associated with AD, and fecal microbiota transplantation (FMT) has emerged as a potential therapeutic approach. However, the precise mechanism of FMT in the treatment of AD remains elusive. In this study, FMT was performed by transplanting fecal microbiota from healthy wild-type mice into APP/PS1 mice (APPswe, PSEN1dE9) to assess the effectiveness of FMT in mitigating AD-associated inflammation and to reveal its precise mechanism of action. The results demonstrated that FMT treatment improved cognitive function and reduced the expression levels of inflammatory factors by regulating the TLR4/MyD88/NF-κB signaling pathway in mice, which was accompanied by the restoration of gut microbial dysbiosis. These findings suggest that FMT has the potential to ameliorate AD symptoms and delay the disease progression in APP/PS1 mice.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"21 1","pages":"2"},"PeriodicalIF":4.7,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11715513/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah Asbury, Jonathan K Y Lai, Kelly C Rilett, Zeeshan Haqqee, Benjamin C Darwin, Jacob Ellegood, Jason P Lerch, Jane A Foster
{"title":"Host genetics maps to behaviour and brain structure in developmental mice.","authors":"Sarah Asbury, Jonathan K Y Lai, Kelly C Rilett, Zeeshan Haqqee, Benjamin C Darwin, Jacob Ellegood, Jason P Lerch, Jane A Foster","doi":"10.1186/s12993-024-00261-y","DOIUrl":"10.1186/s12993-024-00261-y","url":null,"abstract":"<p><p>Gene-environment interactions in the postnatal period have a long-term impact on neurodevelopment. To effectively assess neurodevelopment in the mouse, we developed a behavioural pipeline that incorporates several validated behavioural tests to measure translationally relevant milestones of behaviour in mice. The behavioral phenotype of 1060 wild type and genetically-modified mice was examined followed by structural brain imaging at 4 weeks of age. The influence of genetics, sex, and early life stress on behaviour and neuroanatomy was determined using traditional statistical and machine learning methods. Analytical results demonstrated that neuroanatomical diversity was primarily associated with genotype whereas behavioural phenotypic diversity was observed to be more susceptible to gene-environment variation. We describe a standardized mouse phenotyping pipeline, termed the Developmental Behavioural Milestones (DBM) Pipeline released alongside the 1000 Mouse Developmental Behavioural Milestones (1000 Mouse DBM) database to institute a novel framework for reproducible interventional neuroscience research.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"21 1","pages":"1"},"PeriodicalIF":4.7,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142920533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can rewards enhance creativity? Exploring the effects of real and hypothetical rewards on creative problem solving and neural mechanisms.","authors":"Can Cui, Yuan Yuan, Yingjie Jiang","doi":"10.1186/s12993-024-00264-9","DOIUrl":"10.1186/s12993-024-00264-9","url":null,"abstract":"<p><p>Reward cues have long been considered to enhance creative performance; however, little is known about whether rewards can affect creative problem solving by manipulating states of flexibility and persistence. This study sought to elucidate the differential impacts of real versus hypothetical rewards on the creative process utilizing the Chinese compound remote association task. Behavioral analysis revealed a significantly enhanced solution rate and response times in scenarios involving real rewards, in contrast to those observed with hypothetical rewards. Electrophysiological findings indicated that hypothetical rewards led to more positive P200-600 amplitudes, in stark contrast to the amplitudes observed in the context of real rewards. These findings indicate a positive impact of real rewards on creative remote associations and contribute new insights into the relationship between rewards and creative problem solving, highlighting the crucial role of persistence/flexibility in the formation of creativity.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"37"},"PeriodicalIF":4.7,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiroyuki Ohta, Takashi Nozawa, Kohki Higuchi, Andrea L Meredith, Yuji Morimoto, Yasushi Satoh, Toshiaki Ishizuka
{"title":"Altered trial-to-trial responses to reward outcomes in KCNMA1 knockout mice during probabilistic learning tasks.","authors":"Hiroyuki Ohta, Takashi Nozawa, Kohki Higuchi, Andrea L Meredith, Yuji Morimoto, Yasushi Satoh, Toshiaki Ishizuka","doi":"10.1186/s12993-024-00262-x","DOIUrl":"10.1186/s12993-024-00262-x","url":null,"abstract":"<p><p>The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes. Using a 5-armed bandit task (5-ABT) and a novel Δrepeat rate analysis method that considers individual baseline choice tendencies, we investigated immediate trial-by-trial Win-Stay-Lose-Shift (WSLS) strategies and learning rates across multiple trials in KCNMA1 knockout (KCNMA1<sup>-/-</sup>) mice. Three key findings emerged: (1) Unlike wildtype mice, which showed increased Δrepeat rates after rewards and decreased rates after losses, KCNMA1<sup>-/-</sup> mice exhibited impaired WSLS behavior, (2) KCNMA1<sup>-/-</sup> mice displayed shortened response intervals after unrewarded trials, and (3) despite these short-term behavioral impairments, their learning rates and task accuracy remained comparable to wildtype mice, with significantly shorter task completion times. These results suggest that BK channel dysfunction primarily alters immediate behavioral responses to outcomes in the next trial rather than affecting long-term learning capabilities. These findings and our analytical method may help identify behavioral phenotypes in animal models of both BK channel-related and other neurodevelopmental disorders.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"36"},"PeriodicalIF":4.7,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tina T Vo, Shandell Pahlen, Anqing Zheng, Sian Yu, Emery Lor, Nicholas D Bowman, Robin P Corley, Naomi P Friedman, Sally J Wadsworth, Chandra A Reynolds
{"title":"From controllers to cognition: the importance of selection factors on video game and gameplay mechanic-derived cognitive differences.","authors":"Tina T Vo, Shandell Pahlen, Anqing Zheng, Sian Yu, Emery Lor, Nicholas D Bowman, Robin P Corley, Naomi P Friedman, Sally J Wadsworth, Chandra A Reynolds","doi":"10.1186/s12993-024-00258-7","DOIUrl":"10.1186/s12993-024-00258-7","url":null,"abstract":"<p><p>Playing video games, especially games with action-based mechanics, is correlated with better cognitive performance, yet these performance advantages may originate from intrinsic factors such as earlier life cognitive differences. We investigated whether gaming-cognition associations in a sample past young adulthood remain robust after accounting for adolescent cognitive functioning. Using data from the Colorado Adoption/Twin Study of Lifespan behavioral development and cognitive aging (CATSLife; N = 1241, M<sub>age</sub> = 33.3, %, age range = 28-51, Female = 52.9%), we compared cognitive performance of adult recreational gamers (40.6%) to non-gamers (59.4%) and between different types of gamers. Measures included processing speed, spatial reasoning, and working memory cognitive tasks, gaming status, and gameplay type engagement. The majority of gamer participants reported exclusively playing puzzle/strategy/life simulation games (53.0%) or action type games (33.1%); a smaller proportion reported playing both types of games (10.3%). Overall, gamers significantly outperformed non-gamers across most cognitive tasks (Cohen's d = 0.17-0.25), with limited evidence of a differential gameplay mechanic effect across tasks. Selection effects were evident whereby after adolescent IQ adjustment, gamer cognitive effects diminished by over 35% but persisted for spatial performance. Adolescent IQ predicted puzzle/strategy/life simulation preference but not action-type games, suggesting a selection effect. Our study replicates prior gaming findings and reveals that earlier life functioning contributes to adult gaming-cognition associations. Gamer-spatial associations are not fully attributable to intrinsic factors, and playing video games, regardless of a specific gameplay mechanic or genre, may represent a cognitively engaging lifestyle behavior that may benefit cognitive functioning, with implications for preserved cognition.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"35"},"PeriodicalIF":4.7,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662776/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shruthi S Sharma, Arun Sasidharan, D Yoganarasimha, T R Laxmi
{"title":"Characterization of neuronal oscillations in the prelimbic cortex, nucleus accumbens and CA1 hippocampus during object retrieval task in rats predisposed to early life stress.","authors":"Shruthi S Sharma, Arun Sasidharan, D Yoganarasimha, T R Laxmi","doi":"10.1186/s12993-024-00255-w","DOIUrl":"10.1186/s12993-024-00255-w","url":null,"abstract":"<p><strong>Background: </strong>Early life stress (ELS) during the stress hypo-responsive period (SHRP) alters the curiosity-like behavior later during adolescence. Previous studies have shown maternal separation (MS) stress-induced heightened curiosity and associated risk-taking behavior in the object retrieval task (ORT). However, the neural correlates of curiosity in adolescent rats predisposed to early life stress remain unexplored. Hence, the present study aimed to investigate the neural oscillatory patterns and network characteristics in the regions implicated in curiosity behavior, such as the Prelimbic cortex (PL), Nucleus Accumbens (NAc), and CA1 of the Hippocampus. The local field potentials data were analysed to understand the neural activity patterns in these areas during the risky zone crossing and object retrieval phase of the ORT in MS rats and compared with the normal control (NC) group.</p><p><strong>Results: </strong>In comparison to NC, MS rats showed a reduction in the theta power at 8-12 Hz, beta power at 12-20 Hz, and gamma power at 20-40 Hz range in the PL during risky zone crossing time. MS rats also showed reduced cross-correlation between PL-CA1 and reduced theta coherence between NAc-CA1 during risky zone crossing. During the object retrieval phase, the MS rats showed reduced peak cross-correlation between PL-CA1 and PL-NAc. Behaviourally, MS rats displayed an increased preference for the curiosity platform and retrieved more hidden objects, thus accounting for a higher curiosity index than controls.</p><p><strong>Conclusion: </strong>In summary, a reduced synchronization between the PL, NAc, and CA1 during the object retrieval task indicates how early MS stress during a critical developmental period impacts the limbic circuit connectivity. This corresponded with enhanced curiosity index in adolescent MS rats, predicting an altered intrinsic motivation and hence a higher susceptibility to substance use disorders during adolescence.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"34"},"PeriodicalIF":4.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chih-Zen Chang, Shu-Chuan Wu, Aij-Lie Kwan, Chih-Lung Lin
{"title":"Retraction Note: 4'‑O‑β‑D‑glucosyl‑5‑O‑methylvisamminol, an active ingredient of Saposhnikovia divaricata, attenuates high‑mobility group box 1 and subarachnoid hemorrhage‑induced vasospasm in a rat model.","authors":"Chih-Zen Chang, Shu-Chuan Wu, Aij-Lie Kwan, Chih-Lung Lin","doi":"10.1186/s12993-024-00263-w","DOIUrl":"10.1186/s12993-024-00263-w","url":null,"abstract":"","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"33"},"PeriodicalIF":4.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chih-Lin Lee, Yu-Shan Su, Chi-Yu Chang, Tzu-Yun Kung, Yu-Kai Ma, Pei-Yun Zeng, Ching-Chuan Cheng, Yu-Jen Chang, Yu-Ju Chou, Tsung-Han Kuo
{"title":"Uncovering hidden prosocial behaviors underlying aggression motivation in mice and young children.","authors":"Chih-Lin Lee, Yu-Shan Su, Chi-Yu Chang, Tzu-Yun Kung, Yu-Kai Ma, Pei-Yun Zeng, Ching-Chuan Cheng, Yu-Jen Chang, Yu-Ju Chou, Tsung-Han Kuo","doi":"10.1186/s12993-024-00260-z","DOIUrl":"10.1186/s12993-024-00260-z","url":null,"abstract":"<p><strong>Background: </strong>Animals exhibit a wide range of social behaviors, including positive actions that promote social cohesion and negative behaviors associated with asserting dominance. While these behaviors are often viewed as opposites, they can also exist independently or coexist in complex ways, necessitating further investigation into their interrelationships.</p><p><strong>Results: </strong>To study the interplay between these two types of behaviors, we examined mouse social behaviors using resident-intruder assays and revealed a negative correlation between social aggression and prosocial allogrooming. Suppressing aggressive motivation through various manipulations, including social subordination, olfaction ablation, and inhibition of aggressive neural circuits, led to an increased display of allogrooming behavior. The mouse findings prompted us to further explore the relationship between aggression and prosocial behaviors in preschool children. Similarly, we observed a negative association between aggression and prosocial behaviors, which were potentially influenced by their inhibitory control abilities.</p><p><strong>Conclusions: </strong>Through this cross-species study, we uncovered the inhibitory impact of aggressive neural circuits on mouse allogrooming and established a link between aggression and prosocial behaviors in children. These insights offer valuable implications for understanding and potentially influencing social interactions in both animal and human contexts, with potential applications in preschool education practices.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"32"},"PeriodicalIF":4.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Romi Sagi, Moumita Chakraborty, Milos Bogdanovic, Hila Asraf, Israel Sekler, Ora Kofman, Hagit Cohen, Michal Hershfinkel
{"title":"Loss of the zinc receptor ZnR/GPR39 in mice enhances anxiety-related behavior and motor deficits, and modulates KCC2 expression in the amygdala.","authors":"Romi Sagi, Moumita Chakraborty, Milos Bogdanovic, Hila Asraf, Israel Sekler, Ora Kofman, Hagit Cohen, Michal Hershfinkel","doi":"10.1186/s12993-024-00254-x","DOIUrl":"10.1186/s12993-024-00254-x","url":null,"abstract":"<p><strong>Background: </strong>Mood disorders, particularly depression and anxiety, are associated with zinc dyshomeostasis and aberrant GABAergic signaling. Activation of ZnR/GPR39 by synaptic zinc in the hippocampus triggers phosphorylation of extracellular regulated kinase (ERK1/2), which regulates the K<sup>+</sup>/Cl<sup>-</sup> cotransporter (KCC2) and thereby GABAergic inhibitory neurotransmission and seizure activity. Therefore, we studied whether impaired ZnR/GPR39 signaling is linked to anxiety-related behavior in male or female mice.</p><p><strong>Results: </strong>Using the acoustic startle response, elevated plus maze, and open field test, we found increased anxiety-related behavior in ZnR/GPR39 knockout (KO) mice. Despite a well-established sex difference, where females are typically more prone to anxiety, both male and female ZnR/GPR39 KO mice exhibited increased anxiety-related behavior compared to wildtype (WT) mice. Additionally, ZnR/GPR39 KO mice displayed impaired motor coordination in the pole and rotarod tests but did not show reduced muscle strength, as indicated by a grip test. Finally, we found intrinsic alterations in the expression level of KCC2, a major Cl<sup>-</sup> transporter regulating GABAergic signaling, in the amygdala of naïve ZnR/GPR39 KO mice compared to controls.</p><p><strong>Conclusions: </strong>Our findings indicate that loss of ZnR/GPR39 enhances anxiety-related behavior in both male and female mice. Moreover, ZnR/GPR39 KO mice exhibit impaired motor coordination, which may be associated with increased anxiety. Finally, we demonstrate that loss of ZnR/GPR39 modulates the expression of KCC2 in the amygdala. Thus, we propose that ZnR/GPR39 can serve as a target for regulating GABAergic signaling in anxiety treatment.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"31"},"PeriodicalIF":4.7,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587656/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectral tuning and after-effects in neural entrainment.","authors":"Maëlan Q Menétrey, David Pascucci","doi":"10.1186/s12993-024-00259-6","DOIUrl":"10.1186/s12993-024-00259-6","url":null,"abstract":"<p><p>Neural entrainment has become a popular technique to non-invasively manipulate brain rhythms via external, periodic stimulation. However, there is still debate regarding its underlying mechanisms and effects on brain activity. Here, we used EEG recordings during a visual entrainment paradigm to assess characteristic changes in the spectral content of EEG signals due to entrainment. Our results demonstrate that entrainment not only increases synchrony between neural oscillations and the entraining stimulus but also elicits previously unreported spectral tuning effects and long-lasting after-effects. These findings offer compelling evidence for the presence of dedicated, flexible, and adaptive mechanisms for neural entrainment, which may have key roles in adjusting the sensitivity and dynamic range of brain oscillators in response to environmental temporal structures.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"20 1","pages":"29"},"PeriodicalIF":4.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580347/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}