TREK-1 and epilepsy: regulating the balance of K+ and the glutamate release in astrocyte-neuron interactions.

IF 3.3 2区 心理学 Q1 BEHAVIORAL SCIENCES
Jianing Yang, Li Li, Yanan Xu, Yuguang Guan, Xiaoli Li
{"title":"TREK-1 and epilepsy: regulating the balance of K<sup>+</sup> and the glutamate release in astrocyte-neuron interactions.","authors":"Jianing Yang, Li Li, Yanan Xu, Yuguang Guan, Xiaoli Li","doi":"10.1186/s12993-025-00294-x","DOIUrl":null,"url":null,"abstract":"<p><p>The TWIK-related K<sup>+</sup> channel (TREK-1), a member of the two-pore domain potassium(K2P) family, is characterized as a \"leaky potassium channel\" and is integral to the maintenance of the resting membrane potential. As the most abundant cell type in the central nervous system, astrocytes play important roles in the development of epilepsy by regulating the release of glutamate and the function of potassium channels. Previous studies have revealed that TREK-1 is involved in a range of neurological diseases, including epilepsy. In astrocytes, TREK-1 acts as a crucial regulator of the rapid release of glutamate and passive conductance. However, controversy remains about the expression levels of TREK-1-binding receptors in the process of the release and recycling of glutamate in tripartite synapses. Thus, elucidating the pathological mechanisms involving TREK-1 in epilepsy could significantly increase our understanding of the pathophysiological basis of diseases and facilitate the identification of potential targets for novel therapeutic interventions. Here, we review the physiological function of TREK-1 and studies examining the role of TREK-1 in epilepsy, with a particular emphasis on its interactions with glutamate at tripartite synapses. Furthermore, we provide an analysis of the associated molecular mechanisms of this channel and conclude with an outlook on impending studies on TREK-1 as a novel therapeutic target for epilepsy.</p>","PeriodicalId":8729,"journal":{"name":"Behavioral and Brain Functions","volume":"21 1","pages":"27"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12400553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioral and Brain Functions","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1186/s12993-025-00294-x","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The TWIK-related K+ channel (TREK-1), a member of the two-pore domain potassium(K2P) family, is characterized as a "leaky potassium channel" and is integral to the maintenance of the resting membrane potential. As the most abundant cell type in the central nervous system, astrocytes play important roles in the development of epilepsy by regulating the release of glutamate and the function of potassium channels. Previous studies have revealed that TREK-1 is involved in a range of neurological diseases, including epilepsy. In astrocytes, TREK-1 acts as a crucial regulator of the rapid release of glutamate and passive conductance. However, controversy remains about the expression levels of TREK-1-binding receptors in the process of the release and recycling of glutamate in tripartite synapses. Thus, elucidating the pathological mechanisms involving TREK-1 in epilepsy could significantly increase our understanding of the pathophysiological basis of diseases and facilitate the identification of potential targets for novel therapeutic interventions. Here, we review the physiological function of TREK-1 and studies examining the role of TREK-1 in epilepsy, with a particular emphasis on its interactions with glutamate at tripartite synapses. Furthermore, we provide an analysis of the associated molecular mechanisms of this channel and conclude with an outlook on impending studies on TREK-1 as a novel therapeutic target for epilepsy.

Abstract Image

Abstract Image

Abstract Image

TREK-1与癫痫:在星形胶质细胞-神经元相互作用中调节K+平衡和谷氨酸释放。
twik相关的K+通道(TREK-1)是双孔结构域钾(K2P)家族的一员,其特征是“漏钾通道”,是维持静息膜电位不可或缺的一部分。星形胶质细胞是中枢神经系统中最丰富的细胞类型,通过调节谷氨酸的释放和钾通道的功能,在癫痫的发生发展中起着重要作用。先前的研究表明,TREK-1与包括癫痫在内的一系列神经系统疾病有关。在星形胶质细胞中,TREK-1是谷氨酸快速释放和被动传导的重要调节因子。然而,trek -1结合受体在三方突触谷氨酸释放和再循环过程中的表达水平仍存在争议。因此,阐明TREK-1参与癫痫的病理机制可以显著增加我们对疾病病理生理基础的认识,并有助于确定新的治疗干预措施的潜在靶点。在这里,我们回顾了TREK-1的生理功能,并研究了TREK-1在癫痫中的作用,特别强调了它与谷氨酸在三方突触的相互作用。此外,我们对该通道的相关分子机制进行了分析,并对TREK-1作为癫痫新治疗靶点的研究进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Behavioral and Brain Functions
Behavioral and Brain Functions 医学-行为科学
CiteScore
5.90
自引率
0.00%
发文量
11
审稿时长
6-12 weeks
期刊介绍: A well-established journal in the field of behavioral and cognitive neuroscience, Behavioral and Brain Functions welcomes manuscripts which provide insight into the neurobiological mechanisms underlying behavior and brain function, or dysfunction. The journal gives priority to manuscripts that combine both neurobiology and behavior in a non-clinical manner.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信