Sauri Hernandez-Resendiz, Aishwarya Prakash, Sze Jie Loo, Martina Semenzato, Kroekkiat Chinda, Gustavo E Crespo-Avilan, Linh Chi Dam, Shengjie Lu, Luca Scorrano, Derek J Hausenloy
{"title":"Targeting mitochondrial shape: at the heart of cardioprotection.","authors":"Sauri Hernandez-Resendiz, Aishwarya Prakash, Sze Jie Loo, Martina Semenzato, Kroekkiat Chinda, Gustavo E Crespo-Avilan, Linh Chi Dam, Shengjie Lu, Luca Scorrano, Derek J Hausenloy","doi":"10.1007/s00395-023-01019-9","DOIUrl":"10.1007/s00395-023-01019-9","url":null,"abstract":"<p><p>There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"49"},"PeriodicalIF":9.5,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89716801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches.","authors":"Shuxian Chen, Yuanming Zou, Chunyu Song, Kexin Cao, Kexin Cai, Yanjiao Wu, Zhaobo Zhang, Danxi Geng, Wei Sun, Nanxiang Ouyang, Naijin Zhang, Zhao Li, Guozhe Sun, Yixiao Zhang, Yingxian Sun, Ying Zhang","doi":"10.1007/s00395-023-01018-w","DOIUrl":"10.1007/s00395-023-01018-w","url":null,"abstract":"<p><p>Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"48"},"PeriodicalIF":7.5,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632287/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ilona Kutschka, Edoardo Bertero, Christina Wasmus, Ke Xiao, Lifeng Yang, Xinyu Chen, Yasuhiro Oshima, Marcus Fischer, Manuela Erk, Berkan Arslan, Lin Alhasan, Daria Grosser, Katharina J Ermer, Alexander Nickel, Michael Kohlhaas, Hanna Eberl, Sabine Rebs, Katrin Streckfuss-Bömeke, Werner Schmitz, Peter Rehling, Thomas Thum, Takahiro Higuchi, Joshua Rabinowitz, Christoph Maack, Jan Dudek
{"title":"Activation of the integrated stress response rewires cardiac metabolism in Barth syndrome.","authors":"Ilona Kutschka, Edoardo Bertero, Christina Wasmus, Ke Xiao, Lifeng Yang, Xinyu Chen, Yasuhiro Oshima, Marcus Fischer, Manuela Erk, Berkan Arslan, Lin Alhasan, Daria Grosser, Katharina J Ermer, Alexander Nickel, Michael Kohlhaas, Hanna Eberl, Sabine Rebs, Katrin Streckfuss-Bömeke, Werner Schmitz, Peter Rehling, Thomas Thum, Takahiro Higuchi, Joshua Rabinowitz, Christoph Maack, Jan Dudek","doi":"10.1007/s00395-023-01017-x","DOIUrl":"10.1007/s00395-023-01017-x","url":null,"abstract":"<p><p>Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca<sup>2+</sup>-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"47"},"PeriodicalIF":7.5,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10628049/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Musashi-2 causes cardiac hypertrophy and heart failure by inducing mitochondrial dysfunction through destabilizing Cluh and Smyd1 mRNA.","authors":"Sandhya Singh, Aakash Gaur, Rakesh Kumar Sharma, Renu Kumari, Shakti Prakash, Sunaina Kumari, Ayushi Devendrasingh Chaudhary, Pankaj Prasun, Priyanka Pant, Hannah Hunkler, Thomas Thum, Kumaravelu Jagavelu, Pragya Bharati, Kashif Hanif, Pragya Chitkara, Shailesh Kumar, Kalyan Mitra, Shashi Kumar Gupta","doi":"10.1007/s00395-023-01016-y","DOIUrl":"10.1007/s00395-023-01016-y","url":null,"abstract":"<p><p>Regulation of RNA stability and translation by RNA-binding proteins (RBPs) is a crucial process altering gene expression. Musashi family of RBPs comprising Msi1 and Msi2 is known to control RNA stability and translation. However, despite the presence of MSI2 in the heart, its function remains largely unknown. Here, we aim to explore the cardiac functions of MSI2. We confirmed the presence of MSI2 in the adult mouse, rat heart, and neonatal rat cardiomyocytes. Furthermore, Msi2 was significantly enriched in the heart cardiomyocyte fraction. Next, using RNA-seq data and isoform-specific PCR primers, we identified Msi2 isoforms 1, 4, and 5, and two novel putative isoforms labeled as Msi2 6 and 7 to be expressed in the heart. Overexpression of Msi2 isoforms led to cardiac hypertrophy in cultured cardiomyocytes. Additionally, Msi2 exhibited a significant increase in a pressure-overload model of cardiac hypertrophy. We selected isoforms 4 and 7 to validate the hypertrophic effects due to their unique alternative splicing patterns. AAV9-mediated overexpression of Msi2 isoforms 4 and 7 in murine hearts led to cardiac hypertrophy, dilation, heart failure, and eventually early death, confirming a pathological function for Msi2. Using global proteomics, gene ontology, transmission electron microscopy, seahorse, and transmembrane potential measurement assays, increased MSI2 was found to cause mitochondrial dysfunction in the heart. Mechanistically, we identified Cluh and Smyd1 as direct downstream targets of Msi2. Overexpression of Cluh and Smyd1 inhibited Msi2-induced cardiac malfunction and mitochondrial dysfunction. Collectively, we show that Msi2 induces hypertrophy, mitochondrial dysfunction, and heart failure.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"46"},"PeriodicalIF":9.5,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71477517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenwen Li, Li Quan, Kun Peng, Yanru Wang, Xianhua Wang, Quan Chen, Heping Cheng, Qi Ma
{"title":"Succinate dehydrogenase is essential for epigenetic and metabolic homeostasis in hearts.","authors":"Wenwen Li, Li Quan, Kun Peng, Yanru Wang, Xianhua Wang, Quan Chen, Heping Cheng, Qi Ma","doi":"10.1007/s00395-023-01015-z","DOIUrl":"10.1007/s00395-023-01015-z","url":null,"abstract":"<p><p>A hallmark of heart failure is a metabolic switch away from fatty acids β-oxidation (FAO) to glycolysis. Here, we show that succinate dehydrogenase (SDH) is required for maintenance of myocardial homeostasis of FAO/glycolysis. Mice with cardiomyocyte-restricted deletion of subunit b or c of SDH developed a dilated cardiomyopathy and heart failure. Hypertrophied hearts displayed a decrease in FAO, while glucose uptake and glycolysis were augmented, which was reversed by enforcing FAO fuels via a high-fat diet, which also improved heart failure of mutant mice. SDH-deficient hearts exhibited an increase in genome-wide DNA methylation associated with accumulation of succinate, a metabolite known to inhibit DNA demethylases, resulting in changes of myocardial transcriptomic landscape. Succinate induced DNA hypermethylation and depressed the expression of FAO genes in myocardium, leading to imbalanced FAO/glycolysis. Inhibition of succinate by α-ketoglutarate restored transcriptional profiles and metabolic disorders in SDH-deficient cardiomyocytes. Thus, our findings reveal the essential role for SDH in metabolic remodeling of failing hearts, and highlight the potential of therapeutic strategies to prevent cardiac dysfunction in the setting of SDH deficiency.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"45"},"PeriodicalIF":9.5,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41189681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Splenic monocytes mediate inflammatory response and exacerbate myocardial ischemia/reperfusion injury in a mitochondrial cell-free DNA-TLR9-NLRP3-dependent fashion.","authors":"Dina Xie, Hanliang Guo, Mingbiao Li, Liqun Jia, Hao Zhang, Degang Liang, Naishi Wu, Zequan Yang, Yikui Tian","doi":"10.1007/s00395-023-01014-0","DOIUrl":"10.1007/s00395-023-01014-0","url":null,"abstract":"<p><p>The spleen contributes importantly to myocardial ischemia/reperfusion (MI/R) injury. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) recruits inflammasomes, initiating inflammatory responses and mediating tissue injury. We hypothesize that myocardial cell-free DNA (cfDNA) activates the splenic NLRP3 inflammasome during early reperfusion, increases systemic inflammatory response, and exacerbates myocardial infarct. Mice were subjected to 40 min of ischemia followed by 0, 1, 5, or 15 min, or 24 h of reperfusion. Splenic leukocyte adoptive transfer was performed by injecting isolated splenocytes to mice with splenectomy performed prior to left coronary artery occlusion. CY-09 (4 mg/kg) was administered 5 min before reperfusion. During post-ischemic reperfusion, splenic protein levels of NLRP3, cleaved caspase-1, and interleukin-1β (IL-1β) were significantly elevated and peaked (2.1 ± 0.2-, 3.4 ± 0.4-, and 3.2 ± 0.2-fold increase respectively, p < 0.05) within 5 min of reperfusion. In myocardial tissue, NLRP3 was not upregulated until 24 h after reperfusion. Suppression by CY09, a specific NLRP3 inflammasome inhibitor, or deficiency of NLRP3 significantly reduced myocardial infarct size (17.3% ± 4.2% and 33.2% ± 1.8% decrease respectively, p < 0.01). Adoptive transfer of NLRP3<sup>-/-</sup> splenocytes to WT mice significantly decreased infarct size compared to transfer of WT splenocytes (19.1% ± 2.8% decrease, p < 0.0001). NLRP3 was mainly activated at 5 min after reperfusion in CD11b<sup>+</sup> and LY6G<sup>-</sup> splenocytes, which significantly increased during reperfusion (24.8% ± 0.7% vs.14.3% ± 0.6%, p < 0.0001). The circulating cfDNA level significantly increased in patients undergoing cardiopulmonary bypass (CPB) (43.3 ± 5.3 ng/mL, compared to pre-CPB 23.8 ± 3.5 ng/mL, p < 0.01). Mitochondrial cfDNA (mt-cfDNA) contributed to NLRP3 activation in macrophages (2.1 ± 0.2-fold increase, p < 0.01), which was inhibited by a Toll-like receptor 9(TLR9) inhibitor. The NLRP3 inflammasome in splenic monocytes is activated and mediates the inflammatory response shortly after reperfusion onset, exacerbating MI/R injury in mt-cfDNA/TLR9-dependent fashion. The schema reveals splenic NLRP3 mediates the inflammatory response in macrophages and exacerbates MI/R in a mitochondrial cfDNA/ TLR9-dependent fashion.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"44"},"PeriodicalIF":9.5,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41181962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kathryn J Schunke, Jeannette Rodriguez, Jhansi Dyavanapalli, John Schloen, Xin Wang, Joan Escobar, Grant Kowalik, Emily C Cheung, Caitlin Ribeiro, Rebekah Russo, Bridget R Alber, Olga Dergacheva, Sheena W Chen, Alejandro E Murillo-Berlioz, Kyongjune B Lee, Gregory Trachiotis, Emilia Entcheva, Christine A Brantner, David Mendelowitz, Matthew W Kay
{"title":"Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction.","authors":"Kathryn J Schunke, Jeannette Rodriguez, Jhansi Dyavanapalli, John Schloen, Xin Wang, Joan Escobar, Grant Kowalik, Emily C Cheung, Caitlin Ribeiro, Rebekah Russo, Bridget R Alber, Olga Dergacheva, Sheena W Chen, Alejandro E Murillo-Berlioz, Kyongjune B Lee, Gregory Trachiotis, Emilia Entcheva, Christine A Brantner, David Mendelowitz, Matthew W Kay","doi":"10.1007/s00395-023-01013-1","DOIUrl":"10.1007/s00395-023-01013-1","url":null,"abstract":"<p><p>Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"43"},"PeriodicalIF":7.5,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558415/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41110788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allen Sam Titus, Eun-Ah Sung, Daniela Zablocki, Junichi Sadoshima
{"title":"Mitophagy for cardioprotection.","authors":"Allen Sam Titus, Eun-Ah Sung, Daniela Zablocki, Junichi Sadoshima","doi":"10.1007/s00395-023-01009-x","DOIUrl":"10.1007/s00395-023-01009-x","url":null,"abstract":"<p><p>Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"42"},"PeriodicalIF":9.5,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41100639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nina Kaludercic, Ruth Jepchirchir Arusei, Fabio Di Lisa
{"title":"Recent advances on the role of monoamine oxidases in cardiac pathophysiology.","authors":"Nina Kaludercic, Ruth Jepchirchir Arusei, Fabio Di Lisa","doi":"10.1007/s00395-023-01012-2","DOIUrl":"10.1007/s00395-023-01012-2","url":null,"abstract":"<p><p>Numerous physiological and pathological roles have been attributed to the formation of mitochondrial reactive oxygen species (ROS). However, the individual contribution of different mitochondrial processes independently of bioenergetics remains elusive and clinical treatments unavailable. A notable exception to this complexity is found in the case of monoamine oxidases (MAOs). Unlike other ROS-producing enzymes, especially within mitochondria, MAOs possess a distinct combination of defined molecular structure, substrate specificity, and clinically accessible inhibitors. Another significant aspect of MAO activity is the simultaneous generation of hydrogen peroxide alongside highly reactive aldehydes and ammonia. These three products synergistically impair mitochondrial function at various levels, ultimately jeopardizing cellular metabolic integrity and viability. This pathological condition arises from exacerbated MAO activity, observed in many cardiovascular diseases, thus justifying the exploration of MAO inhibitors as effective cardioprotective strategy. In this context, we not only summarize the deleterious roles of MAOs in cardiac pathologies and the positive effects resulting from genetic or pharmacological MAO inhibition, but also discuss recent findings that expand our understanding on the role of MAO in gene expression and cardiac development.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"41"},"PeriodicalIF":9.5,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10550854/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41098368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingfeng Zhong, Jibo Han, Xiaoxi Fan, Zhouqing Huang, Lan Su, Xueli Cai, Shuang Lin, Xudong Chen, Weijian Huang, Shanshan Dai, Bozhi Ye
{"title":"Novel GSDMD inhibitor GI-Y1 protects heart against pyroptosis and ischemia/reperfusion injury by blocking pyroptotic pore formation.","authors":"Lingfeng Zhong, Jibo Han, Xiaoxi Fan, Zhouqing Huang, Lan Su, Xueli Cai, Shuang Lin, Xudong Chen, Weijian Huang, Shanshan Dai, Bozhi Ye","doi":"10.1007/s00395-023-01010-4","DOIUrl":"10.1007/s00395-023-01010-4","url":null,"abstract":"<p><p>Activation of gasdermin D (GSDMD) and its concomitant cardiomyocyte pyroptosis are critically involved in multiple cardiac pathological conditions. Pharmacological inhibition or gene knockout of GSDMD could protect cardiomyocyte from pyroptosis and dysfunction. Thus, seeking and developing highly potent GSDMD inhibitors probably provide an attractive strategy for treating diseases targeting GSDMD. Through structure-based virtual screening, pharmacological screening and subsequent pharmacological validations, we preliminarily identified GSDMD inhibitor Y1 (GI-Y1) as a selective GSDMD inhibitor with cardioprotective effects. Mechanistically, GI-Y1 binds to GSDMD and inhibits lipid- binding and pyroptotic pore formation of GSDMD-N by targeting the Arg7 residue. Importantly, we confirmed the cardioprotective effect of GI-Y1 on myocardial I/R injury and cardiac remodeling by targeting GSDMD. More extensively, GI-Y1 also inhibited the mitochondrial binding of GSDMD-N and its concomitant mitochondrial dysfunction. The findings of this study identified a new drug (GI-Y1) for the treatment of cardiac disorders by targeting GSDMD, and provide a new tool compound for pyroptosis research.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":"118 1","pages":"40"},"PeriodicalIF":9.5,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41098705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}