David Köhler, Veronika Leiss, Lukas Beichert, Simon Killinger, Daniela Grothe, Ragini Kushwaha, Agnes Schröter, Anna Roslan, Claudia Eggstein, Jule Focken, Tiago Granja, Vasudharani Devanathan, Birgit Schittek, Robert Lukowski, Bettina Weigelin, Peter Rosenberger, Bernd Nürnberg, Sandra Beer-Hammer
{"title":"Targeting Gα<sub>i2</sub> in neutrophils protects from myocardial ischemia reperfusion injury.","authors":"David Köhler, Veronika Leiss, Lukas Beichert, Simon Killinger, Daniela Grothe, Ragini Kushwaha, Agnes Schröter, Anna Roslan, Claudia Eggstein, Jule Focken, Tiago Granja, Vasudharani Devanathan, Birgit Schittek, Robert Lukowski, Bettina Weigelin, Peter Rosenberger, Bernd Nürnberg, Sandra Beer-Hammer","doi":"10.1007/s00395-024-01057-x","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gα<sub>i</sub> proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gα<sub>i2</sub> proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gα<sub>i2</sub> in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2<sup>-/-</sup> → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gα<sub>i2</sub> in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2<sup>-/-</sup> vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gα<sub>i2</sub> for mIRI. Here, we show that infarct size was substantially reduced when Gα<sub>i2</sub> signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2<sup>fl/fl</sup> LysM-Cre<sup>+/tg</sup> vs 42.0% Gnai2<sup>fl/fl</sup>; p < 0.01) or selectively blocked with specific antibodies directed against Gα<sub>i2</sub> (AAR: 19.0% (anti-Gα<sub>i2</sub>) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2<sup>fl/fl</sup>; LysM-Cre<sup>+/tg</sup>) vs 31 (Gnai2<sup>fl/fl</sup>); p < 0.001) and in anti-Gα<sub>i2</sub> antibody-treated (PNCs: 9 (anti-Gα<sub>i2</sub>) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gα<sub>i2</sub> antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gα<sub>i2</sub> antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gα<sub>i2</sub>) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gα<sub>i2</sub> inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.</p>","PeriodicalId":8723,"journal":{"name":"Basic Research in Cardiology","volume":" ","pages":"717-732"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461587/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Research in Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00395-024-01057-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gαi proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gαi2 proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gαi2 in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2-/- → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gαi2 in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2-/- vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gαi2 for mIRI. Here, we show that infarct size was substantially reduced when Gαi2 signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2fl/fl LysM-Cre+/tg vs 42.0% Gnai2fl/fl; p < 0.01) or selectively blocked with specific antibodies directed against Gαi2 (AAR: 19.0% (anti-Gαi2) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2fl/fl; LysM-Cre+/tg) vs 31 (Gnai2fl/fl); p < 0.001) and in anti-Gαi2 antibody-treated (PNCs: 9 (anti-Gαi2) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gαi2 antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gαi2 antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gαi2) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gαi2 inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.
期刊介绍:
Basic Research in Cardiology is an international journal for cardiovascular research. It provides a forum for original and review articles related to experimental cardiology that meet its stringent scientific standards.
Basic Research in Cardiology regularly receives articles from the fields of
- Molecular and Cellular Biology
- Biochemistry
- Biophysics
- Pharmacology
- Physiology and Pathology
- Clinical Cardiology