ASN NEUROPub Date : 2021-12-24DOI: 10.1101/2021.12.23.473665
Maya Y. Xia, Benjamin Owen, J. Chiang, Alyssa Levitt, Katherine Preisinger, W. Yan, Ragan Huffman, W. Nobis
{"title":"Disruption of Synaptic Transmission in the Bed Nucleus of the Stria Terminalis Reduces Seizure-Induced Death in DBA/1 Mice and Alters Brainstem E/I Balance","authors":"Maya Y. Xia, Benjamin Owen, J. Chiang, Alyssa Levitt, Katherine Preisinger, W. Yan, Ragan Huffman, W. Nobis","doi":"10.1101/2021.12.23.473665","DOIUrl":"https://doi.org/10.1101/2021.12.23.473665","url":null,"abstract":"Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in refractory epilepsy patients. Accumulating evidence from recent human studies and animal models suggests that seizure-related respiratory arrest may be important for initiating cardiorespiratory arrest and death. Prior evidence suggests that apnea onset can coincide with seizure spread to the amygdala and that stimulation of the amygdala can reliably induce apneas in epilepsy patients, potentially implicating amygdalar regions in seizure-related respiratory arrest and subsequent postictal hypoventilation and cardiorespiratory death. This study aimed to determine if an extended amygdalar structure, the dorsal bed nucleus of the stria terminalis (dBNST), is involved in seizure-induced respiratory arrest (S-IRA) and death using DBA/1 mice, a mouse strain which has audiogenic seizures (AGS) and a high incidence of postictal respiratory arrest and death. The presence of S-IRA significantly increased c-Fos expression in the dBNST of DBA/1 mice. Furthermore, disruption of synaptic output from the dBNST via viral-induced tetanus neurotoxin (TeNT) significantly improved survival following S-IRA in DBA/1 mice without affecting baseline breathing or hypercapnic (HCVR) and hypoxic ventilatory response (HVR). This disruption in the dBNST resulted in changes to the balance of excitatory/inhibitory (E/I) synaptic events in the downstream brainstem regions of the lateral parabrachial nucleus (PBN) and the periaqueductal gray (PAG). These findings suggest that the dBNST is a potential subcortical forebrain site necessary for the mediation of S-IRA, potentially through its outputs to brainstem respiratory regions.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"14 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44908187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ASN NEUROPub Date : 2021-01-01DOI: 10.1177/1759091420981182
Alexander D Walsh, Linda T Nguyen, Michele D Binder
{"title":"miRNAs in Microglia: Important Players in Multiple Sclerosis Pathology.","authors":"Alexander D Walsh, Linda T Nguyen, Michele D Binder","doi":"10.1177/1759091420981182","DOIUrl":"https://doi.org/10.1177/1759091420981182","url":null,"abstract":"<p><p>Microglia are the resident immune cells of the central nervous system and important regulators of brain homeostasis. Central to this role is a dynamic phenotypic plasticity that enables microglia to respond to environmental and pathological stimuli. Importantly, different microglial phenotypes can be both beneficial and detrimental to central nervous system health. Chronically activated inflammatory microglia are a hallmark of neurodegeneration, including the autoimmune disease multiple sclerosis (MS). By contrast, microglial phagocytosis of myelin debris is essential for resolving inflammation and promoting remyelination. As such, microglia are being explored as a potential therapeutic target for MS. MicroRNAs (miRNAs) are short non-coding ribonucleic acids that regulate gene expression and act as master regulators of cellular phenotype and function. Dysregulation of certain miRNAs can aberrantly activate and promote specific polarisation states in microglia to modulate their activity in inflammation and neurodegeneration. In addition, miRNA dysregulation is implicated in MS pathogenesis, with circulating biomarkers and lesion specific miRNAs identified as regulators of inflammation and myelination. However, the role of miRNAs in microglia that specifically contribute to MS progression are still largely unknown. miRNAs are being explored as therapeutic agents, providing an opportunity to modulate microglial function in neurodegenerative diseases such as MS. This review will focus firstly on elucidating the complex role of microglia in MS pathogenesis. Secondly, we explore the essential roles of miRNAs in microglial function. Finally, we focus on miRNAs that are implicated in microglial processes that contribute directly to MS pathology, prioritising targets that could inform novel therapeutic approaches to MS.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"1759091420981182"},"PeriodicalIF":4.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1759091420981182","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25313702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ASN NEUROPub Date : 2021-01-01DOI: 10.1177/1759091421991771
Ruixia Wu, Yue Su, Quan Yuan, Linlin Li, Jimusi Wuri, Xiaoxuan Liu, Tao Yan
{"title":"Sex Effect on Cardiac Damage in Mice With Experimental Autoimmune Encephalomyelitis.","authors":"Ruixia Wu, Yue Su, Quan Yuan, Linlin Li, Jimusi Wuri, Xiaoxuan Liu, Tao Yan","doi":"10.1177/1759091421991771","DOIUrl":"https://doi.org/10.1177/1759091421991771","url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system. Recent clinical study suggested that MS patient exhibited acute heart failure. Further, 12-lead electrocardiographic study showed a longer QTc interval in both MS patient and experimental autoimmune encephalomyelitis (EAE) Lewis rat. However, there is limited study regarding the effect of sex on cardiac injury in EAE. To our knowledge, sex effect on cardiac damage in mice with EAE has not yet been published. Herein, we examined the role of the immune system in mediating cardiac dysfunction after EAE in female and male mice. Neurological function was subsequently evaluated and cardiac function was assessed by echocardiography at multiple time points after EAE. EAE mice exhibited severe neurological deficit and significant cardiac dysfunction, including decreased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) at 1 and 2 months after EAE induction. Meanwhile male EAE presented increased expression of the oxidative stress (e.g., nicotinamaide adenine dinucleotide phosphate oxidase-2; NOX-2) in heart, as well as cardiac hypertrophy, increased left ventricle (LV) mass and more severe cardiac fibrosis compared with male control mice. In addition, male EAE mice showed significantly increased cardiac canonical inflammatory mediator (e.g., monocyte chemoattractant protein-1; MCP-1, transforming growth factor-β; TGF-β and toll-like receptor 2; TLR-2) compared with female EAE mice at 2 months after EAE induction. In conclusion, EAE increases inflammatory factor expression and aggravates cardiac dysfunction in male mice compared with female mice, which may contribute to different cardiac outcome in EAE mice.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":"1759091421991771"},"PeriodicalIF":4.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1759091421991771","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25332551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ASN NEUROPub Date : 2021-01-01DOI: 10.1177/17590914211009851
Robert P Skoff, Denise Bessert, Shreya Banerjee, Xixia Luo, Ryan Thummel
{"title":"Characterization of the Expression of Vacuolar Protein Sorting 11 (Vps11) in Mammalian Oligodendrocytes.","authors":"Robert P Skoff, Denise Bessert, Shreya Banerjee, Xixia Luo, Ryan Thummel","doi":"10.1177/17590914211009851","DOIUrl":"https://doi.org/10.1177/17590914211009851","url":null,"abstract":"<p><p>A founder mutation in human <i>VPS11</i> (<i>Vacuolar Protein Sorting 11</i>) was recently linked to a genetic leukoencephalopathy in Ashkenazi Jews that presents with the classical features of white matter disorders of the central nervous system (CNS). The neurological deficits include hypomyelination, hypotonia, gradual loss of vision, and seizures. However, the cells expressing the mutation were not identified. Here we describe, using immunocytochemistry, the strong expression of Vps11 in mouse oligodendrocytes and, specifically, its localization with Myelin Associated Glycoprotein (MAG) in the inner tongue of myelin. In longitudinal sections of myelin, it forms a bead-like structure, alternating with Myelin Basic Protein (MBP). Immunofluorescent staining with Vps11 and neurofilament proteins indicates the absence of Vps11 in axons <i>in vivo</i>. Finally, changes in Vps11 expression are associated with altered proteolipid protein (PLP) levels based upon mice with duplications or deletions of the <i>Plp1</i> gene. To determine potential functional contributions of Vps11, we combined Vps11 with Platelet Derived Growth Factor Receptor-α (PDGFRα) <i>in vitro</i> and <i>in vivo</i>: in both conditions, co-localization of the two proteins was frequently found in round vesicles of OPCs/oligodendrocytes, suggesting retrograde transport for degradation by the endolysosomal system. Neuron-to-glial communication has been invoked to explain degenerative changes in myelin followed by degenerative changes in axons, and vice versa; but to our knowledge, no specific proteins in retrograde transport from the myelin inner tongue to oligodendrocyte perikarya have been identified. The identification of mutations in <i>VPS11</i> and its localization at the axon-myelin interface should open new avenues of research.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"13 ","pages":"17590914211009851"},"PeriodicalIF":4.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/17590914211009851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10077084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human Umbilical Cord Mesenchymal Stem Cells-Secreted TSG-6 Is Anti-Inflammatory and Promote Tissue Repair After Spinal Cord Injury","authors":"Ziling Liao, Wei Wang, Weiyue Deng, Yuying Zhang, Aishi Song, Sihao Deng, Huifang Zhao, Shusheng Zhang, Zhiyuan Li","doi":"10.1177/17590914211010628","DOIUrl":"https://doi.org/10.1177/17590914211010628","url":null,"abstract":"Spinal cord injury (SCI) causes patients paralysis and hard to recover. The therapeutic effects of current clinical drugs are accompanied by side effects. In recent years, stem cell therapy has attracted the attention of researchers. Human umbilical cord mesenchymal stem cells (hucMSCs) have been widely used in various diseases due to their excellent paracrine function. TNF-stimulated gene 6 (TSG-6), a secretion factor of stem cells, may play an important role in hucMSCs in the treatment of SCI. So we conducted an experiment to explore its effect. We first observed that the expression of TSG-6 increased in SCI rats after injected with hucMSCs. Then, we used siRNA to knowdown the expression of TSG-6. We treated SCI rats with TSG-6-knockdown hucMSCs. Without TSG-6 expression, hucMSCs treatment made the tissue recovery worse and the number of Nissl bodies less. Meanwhile, neutrophils infiltrated more in the damaged parts. Our research also proved that TSG-6 may help demyelination recovering and alleviate astrocytes gathering in the injury sites. Our study revealed that hucMSCs secreted TSG-6 may decrease the degeneration of myelin sheath, reduce inflammation, decrease neuron loss and promote tissue repair. These results provided a new therapeutic factor for the treatment of SCI.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"13 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/17590914211010628","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45142851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ASN NEUROPub Date : 2020-01-01DOI: 10.1177/1759091420957464
Yangyang Huang, Yeri J Song, Maria Isaac, Shir Miretzky, Ashish Patel, W Geoffrey McAuliffe, Cheryl F Dreyfus
{"title":"Tropomyosin Receptor Kinase B Expressed in Oligodendrocyte Lineage Cells Functions to Promote Myelin Following a Demyelinating Lesion.","authors":"Yangyang Huang, Yeri J Song, Maria Isaac, Shir Miretzky, Ashish Patel, W Geoffrey McAuliffe, Cheryl F Dreyfus","doi":"10.1177/1759091420957464","DOIUrl":"https://doi.org/10.1177/1759091420957464","url":null,"abstract":"<p><p>The levels of brain-derived neurotrophic factor (BDNF) in the corpus callosum have previously been shown to have a critical impact on oligodendrocyte (OLG) lineage cells during cuprizone-elicited demyelination. In particular, BDNF+/- mice exhibit greater losses in myelin protein levels compared to wild-type mice after cuprizone. To investigate whether OLGs may directly mediate these effects of BDNF during a lesion <i>in vivo</i>, we used the cuprizone model of demyelination with inducible conditional male knockout mice to specifically delete the high-affinity tropomyosin receptor kinase B (TrkB) receptor from proteolipid protein + OLGs during cuprizone-elicited demyelination and subsequent remyelination. The loss of TrkB during cuprizone-elicited demyelination results in an increased sensitivity to demyelination as demonstrated by greater deficits in myelin protein levels, greater decreases in numbers of mature OLGs, increased numbers of demyelinated axons, and decreased myelin thickness. When mice are removed from cuprizone, they exhibit a delayed recovery in myelin proteins and myelin. Our data indicate that following a demyelinating lesion, TrkB in OLGs positively regulates myelin protein expression, myelin itself, and remyelination.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"12 ","pages":"1759091420957464"},"PeriodicalIF":4.7,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1759091420957464","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10442809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ASN NEUROPub Date : 2019-12-01DOI: 10.1177/1759091419892692
Anna-Lina Gerberding, S. Zampar, Martina Stazi, D. Liebetanz, O. Wirths
{"title":"Physical Activity Ameliorates Impaired Hippocampal Neurogenesis in the Tg4-42 Mouse Model of Alzheimer’s Disease","authors":"Anna-Lina Gerberding, S. Zampar, Martina Stazi, D. Liebetanz, O. Wirths","doi":"10.1177/1759091419892692","DOIUrl":"https://doi.org/10.1177/1759091419892692","url":null,"abstract":"There is growing evidence from epidemiological studies that especially midlife physical activity might exert a positive influence on the risk and progression of Alzheimer’s disease. In this study, the Tg4-42 mouse model of Alzheimer’s disease has been utilized to assess the effect of different housing conditions on structural changes in the hippocampus. Focusing on the dentate gyrus, we demonstrate that 6-month-old Tg4-42 mice have a reduced number of newborn neurons in comparison to age-matched wild-type mice. Housing these mice for 4 months with either unlimited or intermittent access to a running wheel resulted in a significant rescue of dentate gyrus neurogenesis. Although neither dentate gyrus volume nor neuron number could be modified in this Alzheimer’s disease mouse model, unrestricted access to a running wheel significantly increased dentate gyrus volume and granule cell number in wild-type mice.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1759091419892692","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45588334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ASN NEUROPub Date : 2019-01-01DOI: 10.1177/1759091419863576
Yu-Feng Wang, Yong-Jing Gao
{"title":"2019 Academic Annual Meeting and the Frontier Seminar on “Glial Cell Function and Disease” (Nantong, China)","authors":"Yu-Feng Wang, Yong-Jing Gao","doi":"10.1177/1759091419863576","DOIUrl":"https://doi.org/10.1177/1759091419863576","url":null,"abstract":"The contribution of glial activities to the functions, diseases, and repair of the central nervous system has received increasing attention in neuroscience studies. To promote the research of glial cells and increase cooperation with peers, the 2019 Academic Annual Meeting and the Frontier Seminar on “Glial Cell Function and Disease” was held in Nantong City, Jiangsu Province, China from May 24 to 26. The meeting was organized by Drs. Yong-Jing Gao and Jia-Wei Zhou of the Chinese Society of Neuroscience Glia Branch. The conference focused on the physiological and pathological functions of astrocytes, microglia, and oligodendrocytes with 25 speakers in two plenary speeches and five sections of more than 180 participants engaged in glial cell research. In the two plenary lectures, Yutian Wang from the University of British Columbia and Xia Zhang from the University of Ottawa presented “Development of NMDAR (N-methyl-D-aspartic acid receptor)-positive allosteric modulators as novel therapeutics for brain disorders” and “Mechanisms underlying cannabinoid regulation of brain function and disease,” respectively. The five sections included microglia and disease, astrocytes and disease, glioma treatment and glial imaging, oligodendrocytes and disease, and glial–neuronal interactions and disease. This meeting allowed extensive and in-depth academic exchanges on the latest research and experimental techniques, represented the highest achievements of Chinese scholars on glial cells, and promoted the cooperation between peers in the fields of glia studies.","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1759091419863576","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47851821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}