ASN NEURO最新文献

筛选
英文 中文
Implications of Iron in Ferroptosis, Necroptosis, and Pyroptosis as Potential Players in TBI Morbidity and Mortality. 铁败血病、坏死病和热败血病中的铁作为创伤性脑损伤发病率和死亡率的潜在参与者的影响。
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-09-09 DOI: 10.1080/17590914.2024.2394352
Makenzie Nolt, James Connor
{"title":"Implications of Iron in Ferroptosis, Necroptosis, and Pyroptosis as Potential Players in TBI Morbidity and Mortality.","authors":"Makenzie Nolt, James Connor","doi":"10.1080/17590914.2024.2394352","DOIUrl":"10.1080/17590914.2024.2394352","url":null,"abstract":"<p><p>Iron is a critical transition metal required to sustain a healthy central nervous system. Iron is involved in metabolic reactions, enzymatic activity, myelinogenesis, and oxygen transport. However, in several pathological conditions such as cancer, neurodegeneration, and neurotrauma iron becomes elevated. Excessive iron can have deleterious effects leading to reactive oxygen species (ROS) via the Fenton reaction. Iron-derived ROS are known to drive several mechanisms such as cell death pathways including ferroptosis, necroptosis, and pyroptosis. Excessive iron present in the post-traumatic brain could trigger these harmful pathways potentiating the high rates of morbidity and mortality. In the present review, we will discuss how iron plays an intricate role in initiating ferroptosis, necroptosis, and pyroptosis, examine their potential link to traumatic brain injury morbidity and mortality, and suggest therapeutic targets.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse Responses of Oligodendrocytes to Different FGF-Family Members: Uncoupling Structure-Function Relationship Within FGF Subfamilies. 少突胶质细胞对不同 FGF 家族成员的不同反应:解耦 FGF 亚家族内的结构-功能关系。
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-07-15 DOI: 10.1080/17590914.2024.2371163
Hebe M Guardiola-Diaz, Brett T DiBenedictis, Erealda Prendaj, Rashmi Bansal
{"title":"Diverse Responses of Oligodendrocytes to Different FGF-Family Members: Uncoupling Structure-Function Relationship Within FGF Subfamilies.","authors":"Hebe M Guardiola-Diaz, Brett T DiBenedictis, Erealda Prendaj, Rashmi Bansal","doi":"10.1080/17590914.2024.2371163","DOIUrl":"10.1080/17590914.2024.2371163","url":null,"abstract":"<p><p>The fifteen canonical paracrine fibroblast growth factors (FGFs) are organized in five subfamilies that interact with four FGF-receptors (FGFRs) and heparan sulfate proteoglycan (HSPG) co-receptors. Many of these FGFs are expressed in CNS regions where oligodendrocyte (OL) progenitors originate, migrate or differentiate. FGF2 (basic FGF) is considered a prototype FGF and the information about the effects of FGF signaling on OL-lineage cells has evolved largely from the study of FGF2. However, other FGFs from four subfamilies ((FGF1 (FGF1,-2), FGF4 (FGF4,-5,-6), FGF8 (FGF8,-17,-18) and FGF9 (FGF9,-16,-20)) that can interact with the isoforms of FGFRs expressed in OL-lineage cells may also play important roles. We previously reported OL-responses to FGF8 family members. Here, we investigate the effects of members of the FGF1,-4, and -9 subfamilies on proliferation and differentiation of OL progenitors (OPCs), and on cell cycle re-entry and down-regulation of myelin proteins by mature OLs. We found that while FGF2 induced all these responses strongly, FGF4,-6,-9 could do so only transiently and in the presence of exogenous HSPGs, and that FGF5,-16,-20 could not do so even in the presence of heparin or at higher concentrations. Furthermore, we noted that structurally similar FGFs within subfamilies did not always show similarities in their biological effects on OL-lineage cells. Taken together, these studies reveal that FGFs differ in the way they regulate the OL-lineage cells, emphasizes the selectivity and importance of HSPGs as FGF co-receptors in OL-lineage cells and suggests that structural similarity among FGF-subfamily members may not always predict their overlapping biological functions.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262039/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pannexin1 Mediates Early-Life Seizure-Induced Social Behavior Deficits. Pannexin1介导早期癫痫发作诱发的社交行为缺陷
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-07-16 DOI: 10.1080/17590914.2024.2371164
Price Obot, Antonio Cibelli, Jian Pan, Libor Velíšek, Jana Velíšková, Eliana Scemes
{"title":"Pannexin1 Mediates Early-Life Seizure-Induced Social Behavior Deficits.","authors":"Price Obot, Antonio Cibelli, Jian Pan, Libor Velíšek, Jana Velíšková, Eliana Scemes","doi":"10.1080/17590914.2024.2371164","DOIUrl":"10.1080/17590914.2024.2371164","url":null,"abstract":"<p><p>There is a high co-morbidity between childhood epilepsy and autism spectrum disorder (ASD), with age of seizure onset being a critical determinant of behavioral outcomes. The interplay between these comorbidities has been investigated in animal models with results showing that the induction of seizures at early post-natal ages leads to learning and memory deficits and to autistic-like behavior in adulthood. Modifications of the excitation/inhibition (glutamate/GABA, ATP/adenosine) balance that follows early-life seizures (ELS) are thought to be the physiological events that underlie neuropsychiatric and neurodevelopmental disorders. Although alterations in purinergic/adenosinergic signaling have been implicated in seizures and ASD, it is unknown whether the ATP release channels, Pannexin1 (Panx1), contribute to ELS-induced behavior changes. To tackle this question, we used the ELS-kainic acid model in transgenic mice with global and cell type specific deletion of Panx1 to evaluate whether these channels were involved in behavioral deficits that occur later in life. Our studies show that ELS results in Panx1 dependent social behavior deficits and also in poor performance in a spatial memory test that does not involve Panx1. These findings provide support for a link between ELS and adult behavioral deficits. Moreover, we identify neuronal and not astrocyte Panx1 as a potential target to specifically limit astrogliosis and social behavioral deficits resultant from early-life seizures.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Analysis of Early White Matter Damage in Cuprizone Mouse Model of Demyelination Using 7.0 T MRI Multiparametric Approach. 利用 7.0 T 磁共振成像多参数方法定量分析 Cuprizone 脱髓鞘小鼠模型中的早期白质损伤
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-10-14 DOI: 10.1080/17590914.2024.2404366
Emma Friesen, Maxina Sheft, Kamya Hari, Vanessa Palmer, Shenghua Zhu, Sheryl Herrera, Richard Buist, Depeng Jiang, Xin-Min Li, Marc R Del Bigio, Jonathan D Thiessen, Melanie Martin
{"title":"Quantitative Analysis of Early White Matter Damage in Cuprizone Mouse Model of Demyelination Using 7.0 T MRI Multiparametric Approach.","authors":"Emma Friesen, Maxina Sheft, Kamya Hari, Vanessa Palmer, Shenghua Zhu, Sheryl Herrera, Richard Buist, Depeng Jiang, Xin-Min Li, Marc R Del Bigio, Jonathan D Thiessen, Melanie Martin","doi":"10.1080/17590914.2024.2404366","DOIUrl":"https://doi.org/10.1080/17590914.2024.2404366","url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) is commonly used to follow the progression of neurodegenerative conditions, including multiple sclerosis (MS). MRI is limited by a lack of correlation between imaging results and clinical presentations, referred to as the clinico-radiological paradox. Animal models are commonly used to mimic the progression of human neurodegeneration and as a tool to help resolve the paradox. Most studies focus on later stages of white matter (WM) damage whereas few focus on early stages when oligodendrocyte apoptosis has just begun. The current project focused on these time points, namely weeks 2 and 3 of cuprizone (CPZ) administration, a toxin which induces pathophysiology similar to MS. <i>In vivo</i> T<sub>2</sub>-weighted (T<sub>2</sub>W) and Magnetization Transfer Ratio (MTR) maps and <i>ex vivo</i> Diffusion Tensor Imaging (DTI), Magnetization Transfer Imaging (MTI), and relaxometry (T<sub>1</sub> and T<sub>2</sub>) values were obtained at 7 T. Significant changes in T<sub>2</sub>W signal intensity and non-significant changes in MTR were observed to correspond to early WM damage, whereas significant changes in both corresponded with full demyelination. Some DTI metrics decrease with simultaneous increase in others, indicating acute demyelination. MTI metrics T<sub>2</sub><sup>A</sup>, T<sub>2</sub><sup>B</sup>, <i>f</i> and R were observed to have contradictory changes across CPZ administration. T<sub>1</sub> relaxation times were observed to have stronger correlations to disease states during later stages of CPZ treatment, whereas T<sub>2</sub> had weak correlations to early WM damage. These results all suggest the need for multiple metrics and further studies at early and late time points of demyelination. Further research is required to continue investigating the interplay between various MR metrics during all weeks of CPZ administration.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abnormal Regulation of Mitochondrial Sphingolipids during Aging and Alzheimer's Disease. 衰老和阿尔茨海默病过程中线粒体鞘磷脂的异常调节
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-11-05 DOI: 10.1080/17590914.2024.2404367
Simone M Crivelli, Zainuddin Quadri, Ahmed Elsherbini, Hemendra J Vekaria, Patrick G Sullivan, Wenbo Zhi, Pilar Martinez-Martinez, Stefka D Spassieva, Erhard Bieberich
{"title":"Abnormal Regulation of Mitochondrial Sphingolipids during Aging and Alzheimer's Disease.","authors":"Simone M Crivelli, Zainuddin Quadri, Ahmed Elsherbini, Hemendra J Vekaria, Patrick G Sullivan, Wenbo Zhi, Pilar Martinez-Martinez, Stefka D Spassieva, Erhard Bieberich","doi":"10.1080/17590914.2024.2404367","DOIUrl":"https://doi.org/10.1080/17590914.2024.2404367","url":null,"abstract":"<p><p>During pathogenesis of Alzheimer's disease (AD), mitochondria suffer alterations that lead to low energy production and reactive oxygen species formation. However, the mechanism of impaired mitochondria homeostasis in AD is not fully understood. We hypothesized that abnormal sphingolipid metabolism in mitochondria could be one of the contributing factors to mitochondrial dysfunction. Synaptic and non-synaptic mitochondria were isolated from 5xFAD and wild type (WT) mice at 3 and 7 months using Ficoll gradient ultracentrifugation, and their function was analyzed using Seahorse assay. Additionally, mitochondria were analyzed using mass spectrometry for proteomics and sphingolipidomics analyses. Sphingolipid levels were also determined in synaptic and non-synaptic mitochondria isolated from AD patients and healthy controls. We found that synaptic mitochondria isolated from 3-months old 5xFAD mice manifest diminished oxygen consumption as compared to WT. Consistently, proteomics analysis showed that proteins related to respiratory electron transport and oxidative phosphorylation were altered in 5xFAD mice. When quantifying the main sphingolipids in mitochondria, we found that Cer 18:0, Cer 22:0, and Cer 24:1 were increased already at 3 months in 5xFAD mice. No increase in ceramides was detected in mitochondria isolated from AD patients. However, increased levels of sphingosine were found in both 5xFAD mice and AD patients when compared to respective controls. We report that the regulation of sphingolipids in mitochondria is abnormal at 3 months of age in 5xFAD mice, as indicated by the accumulation of long-chain ceramides, which increases with age. Sphingosine levels are increased in both the mitochondria of 5xFAD mice and AD patients. Our data suggest that the sphingolipid composition is dysregulated in mitochondria early during AD pathogenesis.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robert Paul Skoff (1942-2023). 罗伯特-保罗-斯科夫(1942-2023)。
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-09-05 DOI: 10.1080/17590914.2024.2393559
Joyce Benjamins, Pamela Knapp, Anne Boullerne
{"title":"Robert Paul Skoff (1942-2023).","authors":"Joyce Benjamins, Pamela Knapp, Anne Boullerne","doi":"10.1080/17590914.2024.2393559","DOIUrl":"10.1080/17590914.2024.2393559","url":null,"abstract":"","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial. 社论
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-09-09 DOI: 10.1080/17590914.2024.2386884
Douglas L Feinstein
{"title":"Editorial.","authors":"Douglas L Feinstein","doi":"10.1080/17590914.2024.2386884","DOIUrl":"10.1080/17590914.2024.2386884","url":null,"abstract":"","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astrocytic Ephrin-B1 Regulates Oligodendrocyte Development and Myelination. 星形胶质细胞 Ephrin-B1 调控少突胶质细胞的发育和髓鞘化
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-10-22 DOI: 10.1080/17590914.2024.2401753
Samantha N Sutley-Koury, Alyssa Anderson, Christopher Taitano-Johnson, Moyinoluwa Ajayi, Anna O Kulinich, Kimberly Contreras, Jasmin Regalado, Seema K Tiwari-Woodruff, Iryna M Ethell
{"title":"Astrocytic Ephrin-B1 Regulates Oligodendrocyte Development and Myelination.","authors":"Samantha N Sutley-Koury, Alyssa Anderson, Christopher Taitano-Johnson, Moyinoluwa Ajayi, Anna O Kulinich, Kimberly Contreras, Jasmin Regalado, Seema K Tiwari-Woodruff, Iryna M Ethell","doi":"10.1080/17590914.2024.2401753","DOIUrl":"10.1080/17590914.2024.2401753","url":null,"abstract":"<p><p>Astrocytes have been implicated in oligodendrocyte development and myelination, however, the mechanisms by which astrocytes regulate oligodendrocytes remain unclear. Our findings suggest a new mechanism that regulates astrocyte-mediated oligodendrocyte development through ephrin-B1 signaling in astrocytes. Using a mouse model, we examined the role of astrocytic ephrin-B1 signaling in oligodendrocyte development by deleting ephrin-B1 specifically in astrocytes during the postnatal days (P)14-P28 period and used mRNA analysis, immunohistochemistry, and mouse behaviors to study its effects on oligodendrocytes and myelination. We found that deletion of astrocytic ephrin-B1 downregulated many genes associated with oligodendrocyte development, myelination, and lipid metabolism in the hippocampus and the corpus callosum. Additionally, we observed a reduced number of oligodendrocytes and impaired myelination in the corpus callosum of astrocyte-specific ephrin-B1 KO mice. Finally, our data show reduced motor strength in these mice exhibiting clasping phenotype and impaired performance in the rotarod test most likely due to impaired myelination. Our studies provide new evidence that astrocytic ephrin-B1 positively regulates oligodendrocyte development and myelination, potentially through astrocyte-oligodendrocyte interactions.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142493736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cellular Mechanisms of Cognitive Enhancement: The In Vivo Modulation of the Firing Activity and the Responsiveness of Rat Hippocampal Neurons by Memantine and Alpha7 Nicotinic Acetylcholine Receptor Ligands. 认知增强的细胞机制:美金刚胺和 Alpha7 尼古丁乙酰胆碱受体配体对大鼠海马神经元发射活动和反应性的体内调节。
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-07-16 DOI: 10.1080/17590914.2024.2371160
Lili Veronika Nagy, Zsolt Kristóf Bali, István Ledneczki, Zsolt Némethy, Balázs Lendvai, István Hernádi
{"title":"Cellular Mechanisms of Cognitive Enhancement: The <i>In Vivo</i> Modulation of the Firing Activity and the Responsiveness of Rat Hippocampal Neurons by Memantine and Alpha7 Nicotinic Acetylcholine Receptor Ligands.","authors":"Lili Veronika Nagy, Zsolt Kristóf Bali, István Ledneczki, Zsolt Némethy, Balázs Lendvai, István Hernádi","doi":"10.1080/17590914.2024.2371160","DOIUrl":"10.1080/17590914.2024.2371160","url":null,"abstract":"<p><p>Promising new pharmacological strategies for the enhancement of cognition target either nicotinic acetylcholine receptors (nAChR) or N-methyl-D-aspartate receptors (NMDAR). There is also an increasing interest in low-dose combination therapies co-targeting the above neurotransmitter systems to reach greater efficacy over the monotreatments and to reduce possible side effects of high-dose monotreatments. In the present study, we assessed modulatory effects of the α7 nAChR-selective agonist PHA-543613 (PHA), a novel α7 nAChR positive allosteric modulator compound (CompoundX) and the NMDAR antagonist memantine on the <i>in vivo</i> firing activity of CA1 pyramidal neurons in the rat hippocampus. Three different test conditions were applied: spontaneous firing activity, NMDA-evoked firing activity and ACh-evoked firing activity. Results showed that high but not low doses of memantine decreased NMDA-evoked firing activity, and low doses increased the spontaneous and ACh-evoked firing activity. Systemically applied PHA robustly potentiated ACh-evoked firing activity with having no effect on NMDA-evoked activity. In addition, CompoundX increased both NMDA- and ACh-evoked firing activity, having no effects on spontaneous firing of the neurons. A combination of low doses of memantine and PHA increased firing activity in all test conditions and similar effects were observed with memantine and CompoundX but without spontaneous firing activity increasing effects. Our present results demonstrate that α7 nAChR agents beneficially interact with Alzheimer's disease medication memantine. Moreover, positive allosteric modulators potentiate memantine effects on the right time and the right place without affecting spontaneous firing activity. All these data confirm previous behavioral evidence for the viability of combination therapies for cognitive enhancement.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced Expression of Oligodendrocyte Linage-Enriched Transcripts During the Endoplasmic Reticulum Stress/Integrated Stress Response. 内质网应激/综合应激反应期间少突胶质细胞纤层丰富转录本的表达减少
IF 3.9 4区 医学
ASN NEURO Pub Date : 2024-01-01 Epub Date: 2024-07-16 DOI: 10.1080/17590914.2024.2371162
Yonglin Gao, Lukasz P Slomnicki, Ewa Kilanczyk, Michael D Forston, Maciej Pietrzak, Eric C Rouchka, Russell M Howard, Scott R Whittemore, Michal Hetman
{"title":"Reduced Expression of Oligodendrocyte Linage-Enriched Transcripts During the Endoplasmic Reticulum Stress/Integrated Stress Response.","authors":"Yonglin Gao, Lukasz P Slomnicki, Ewa Kilanczyk, Michael D Forston, Maciej Pietrzak, Eric C Rouchka, Russell M Howard, Scott R Whittemore, Michal Hetman","doi":"10.1080/17590914.2024.2371162","DOIUrl":"10.1080/17590914.2024.2371162","url":null,"abstract":"<p><p>Endoplasmic reticulum (ER) stress in oligodendrocyte (OL) linage cells contributes to several CNS pathologies including traumatic spinal cord injury (SCI) and multiple sclerosis. Therefore, primary rat OL precursor cell (OPC) transcriptomes were analyzed using RNASeq after treatments with two ER stress-inducing drugs, thapsigargin (TG) or tunicamycin (TM). Gene ontology term (GO) enrichment showed that both drugs upregulated mRNAs associated with the general stress response. The GOs related to ER stress were only enriched for TM-upregulated mRNAs, suggesting greater ER stress selectivity of TM. Both TG and TM downregulated cell cycle/cell proliferation-associated transcripts, indicating the anti-proliferative effects of ER stress. Interestingly, many OL lineage-enriched mRNAs were downregulated, including those for transcription factors that drive OL identity such as <i>Olig2</i>. Moreover, ER stress-associated decreases of OL-specific gene expression were found in mature OLs from mouse models of white matter pathologies including contusive SCI, toxin-induced demyelination, and Alzheimer's disease-like neurodegeneration. Taken together, the disrupted transcriptomic fingerprint of OL lineage cells may facilitate myelin degeneration and/or dysfunction when pathological ER stress persists in OL lineage cells.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262469/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141722922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信