米诺环素和mGluR5拮抗剂联合治疗可改变脆性X综合征小鼠模型的静息脑电图谱功率,但不会改变声音诱发反应。

IF 3.7 4区 医学 Q2 NEUROSCIENCES
ASN NEURO Pub Date : 2025-01-01 Epub Date: 2025-10-16 DOI:10.1080/17590914.2025.2564628
M H Kassir, J W Lovelace, D K Binder, I E Ethell, K A Razak
{"title":"米诺环素和mGluR5拮抗剂联合治疗可改变脆性X综合征小鼠模型的静息脑电图谱功率,但不会改变声音诱发反应。","authors":"M H Kassir, J W Lovelace, D K Binder, I E Ethell, K A Razak","doi":"10.1080/17590914.2025.2564628","DOIUrl":null,"url":null,"abstract":"<p><p>Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism-like behaviors. Glutamatergic mGluR5 receptors and matrix metalloproteinase-9 (MMP-9) are therapeutic targets to treat FXS, but clinical trials targeting each of these pathways have not been successful. Here, we tested if the electroencephalography (EEG) phenotypes associated with FXS are reversed with a novel combination of treatments affecting the two pathways. <i>Fmr1</i> knockout (KO) mice were given 10 days of CTEP (mGluR5 antagonist) alone or in combination with minocycline (MMP-9 inhibitor). EEG was recorded during resting (no acoustic stimulation) and during sound presentations (to produce sound-evoked EEG) at 1 day and 10 days after the beginning of treatment administration to test acute effects and potential tachyphylaxis. In pre-treatment WT and KO mice comparisons, we replicated previously published <i>Fmr1</i> KO mouse EEG phenotypes including elevated power in the resting gamma band, elevated single trial power, and reduced phase-locking to spectrotemporally dynamic auditory stimuli. We found that CTEP treatment alone did not show any benefit compared to vehicle in <i>Fmr1</i> KO mice after either 1 or 10 days of treatment. CTEP + minocycline reduced resting gamma band power in the <i>Fmr1</i> KO mice to a greater extent than vehicle at both treatment time points. There were no effects on sound-evoked responses. These data suggest that combined CTEP and minocycline treatment alters resting EEG measures while each treatment administered separately does not yield similar changes. High power in broadband gamma frequency correlates with irritability, stereotyped behaviors, and hyperactivity in FXS patients, suggesting a combination of drugs that reduce mGluR5 and MMP-9 activity may be beneficial in FXS.</p>","PeriodicalId":8616,"journal":{"name":"ASN NEURO","volume":"17 1","pages":"2564628"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Treatment with Minocycline and an mGluR5 Antagonist Alters Resting EEG Spectral Power, but Not Sound-Evoked Responses, in a Mouse Model of Fragile X Syndrome.\",\"authors\":\"M H Kassir, J W Lovelace, D K Binder, I E Ethell, K A Razak\",\"doi\":\"10.1080/17590914.2025.2564628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism-like behaviors. Glutamatergic mGluR5 receptors and matrix metalloproteinase-9 (MMP-9) are therapeutic targets to treat FXS, but clinical trials targeting each of these pathways have not been successful. Here, we tested if the electroencephalography (EEG) phenotypes associated with FXS are reversed with a novel combination of treatments affecting the two pathways. <i>Fmr1</i> knockout (KO) mice were given 10 days of CTEP (mGluR5 antagonist) alone or in combination with minocycline (MMP-9 inhibitor). EEG was recorded during resting (no acoustic stimulation) and during sound presentations (to produce sound-evoked EEG) at 1 day and 10 days after the beginning of treatment administration to test acute effects and potential tachyphylaxis. In pre-treatment WT and KO mice comparisons, we replicated previously published <i>Fmr1</i> KO mouse EEG phenotypes including elevated power in the resting gamma band, elevated single trial power, and reduced phase-locking to spectrotemporally dynamic auditory stimuli. We found that CTEP treatment alone did not show any benefit compared to vehicle in <i>Fmr1</i> KO mice after either 1 or 10 days of treatment. CTEP + minocycline reduced resting gamma band power in the <i>Fmr1</i> KO mice to a greater extent than vehicle at both treatment time points. There were no effects on sound-evoked responses. These data suggest that combined CTEP and minocycline treatment alters resting EEG measures while each treatment administered separately does not yield similar changes. High power in broadband gamma frequency correlates with irritability, stereotyped behaviors, and hyperactivity in FXS patients, suggesting a combination of drugs that reduce mGluR5 and MMP-9 activity may be beneficial in FXS.</p>\",\"PeriodicalId\":8616,\"journal\":{\"name\":\"ASN NEURO\",\"volume\":\"17 1\",\"pages\":\"2564628\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASN NEURO\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17590914.2025.2564628\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASN NEURO","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17590914.2025.2564628","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脆性X染色体综合征(FXS)是导致智力残疾和自闭症样行为的主要遗传原因。谷氨酸能mGluR5受体和基质金属蛋白酶-9 (MMP-9)是治疗FXS的治疗靶点,但针对这些途径的临床试验尚未成功。在这里,我们测试了与FXS相关的脑电图(EEG)表型是否通过影响两种途径的新型治疗组合而逆转。Fmr1基因敲除(KO)小鼠单独给予CTEP (mGluR5拮抗剂)或联合米诺环素(MMP-9抑制剂)10天。在治疗开始后第1天和第10天分别记录静息(无声刺激)和声音呈现(产生声诱发脑电图)期间的脑电图,以测试急性效应和潜在的快速反应。在预处理WT和KO小鼠的比较中,我们重复了之前发表的Fmr1 KO小鼠脑电图表型,包括静息伽马带功率升高,单次试验功率升高,对光谱动态听觉刺激的锁相减少。我们发现,在治疗1天或10天后,与对照剂相比,单独使用CTEP治疗对Fmr1 KO小鼠没有任何益处。在两个治疗时间点,CTEP +二甲胺四环素在更大程度上降低了Fmr1 KO小鼠的静息伽马带功率。对声音引起的反应没有影响。这些数据表明,CTEP和米诺环素联合治疗会改变静息EEG测量,而单独进行的每种治疗不会产生类似的变化。宽带伽马频率的高功率与FXS患者的易怒、刻板行为和多动相关,提示联合使用降低mGluR5和MMP-9活性的药物可能对FXS有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined Treatment with Minocycline and an mGluR5 Antagonist Alters Resting EEG Spectral Power, but Not Sound-Evoked Responses, in a Mouse Model of Fragile X Syndrome.

Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and autism-like behaviors. Glutamatergic mGluR5 receptors and matrix metalloproteinase-9 (MMP-9) are therapeutic targets to treat FXS, but clinical trials targeting each of these pathways have not been successful. Here, we tested if the electroencephalography (EEG) phenotypes associated with FXS are reversed with a novel combination of treatments affecting the two pathways. Fmr1 knockout (KO) mice were given 10 days of CTEP (mGluR5 antagonist) alone or in combination with minocycline (MMP-9 inhibitor). EEG was recorded during resting (no acoustic stimulation) and during sound presentations (to produce sound-evoked EEG) at 1 day and 10 days after the beginning of treatment administration to test acute effects and potential tachyphylaxis. In pre-treatment WT and KO mice comparisons, we replicated previously published Fmr1 KO mouse EEG phenotypes including elevated power in the resting gamma band, elevated single trial power, and reduced phase-locking to spectrotemporally dynamic auditory stimuli. We found that CTEP treatment alone did not show any benefit compared to vehicle in Fmr1 KO mice after either 1 or 10 days of treatment. CTEP + minocycline reduced resting gamma band power in the Fmr1 KO mice to a greater extent than vehicle at both treatment time points. There were no effects on sound-evoked responses. These data suggest that combined CTEP and minocycline treatment alters resting EEG measures while each treatment administered separately does not yield similar changes. High power in broadband gamma frequency correlates with irritability, stereotyped behaviors, and hyperactivity in FXS patients, suggesting a combination of drugs that reduce mGluR5 and MMP-9 activity may be beneficial in FXS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASN NEURO
ASN NEURO NEUROSCIENCES-
CiteScore
7.70
自引率
4.30%
发文量
35
审稿时长
>12 weeks
期刊介绍: ASN NEURO is an open access, peer-reviewed journal uniquely positioned to provide investigators with the most recent advances across the breadth of the cellular and molecular neurosciences. The official journal of the American Society for Neurochemistry, ASN NEURO is dedicated to the promotion, support, and facilitation of communication among cellular and molecular neuroscientists of all specializations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信