Atmospheric Research最新文献

筛选
英文 中文
Spatiotemporal evolution of dust over Tarim Basin under continuous clear-sky 连续晴空下塔里木盆地上空尘埃的时空演变
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-04 DOI: 10.1016/j.atmosres.2024.107764
Xiaokai Song , Tian Zhou , Yufei Wang , Xingran Li , Dongsheng Wu , Yonghong Gu , Zikai Lin , Sabur F. Abdullaev , Mansur O. Amonov
{"title":"Spatiotemporal evolution of dust over Tarim Basin under continuous clear-sky","authors":"Xiaokai Song ,&nbsp;Tian Zhou ,&nbsp;Yufei Wang ,&nbsp;Xingran Li ,&nbsp;Dongsheng Wu ,&nbsp;Yonghong Gu ,&nbsp;Zikai Lin ,&nbsp;Sabur F. Abdullaev ,&nbsp;Mansur O. Amonov","doi":"10.1016/j.atmosres.2024.107764","DOIUrl":"10.1016/j.atmosres.2024.107764","url":null,"abstract":"<div><div>The unique terrain and complex atmospheric boundary layer (ABL) processes result in a distinctive spatiotemporal distribution of dust in the Tarim Basin; however, this distribution remains unclear under continuous clear-sky conditions. In this study, 382 cases were selected to investigate the spatiotemporal evolution of dust and its potential mechanisms based on MERRA-2 and ERA5 reanalysis datasets combined with MODIS satellite observations during the warm seasons from 2000 to 2023. Taking the typical case of a completely cloudless on July 24–27, 2016, the dust aerosol optical depth (DAOD) at the margin of the Tarim Basin increased with time. The climatological characteristics showed a high DAOD in the northern, western, and southwestern regions and a relatively low DAOD in the central area. Nocturnal low-level jets dominated by northeasterly winds enhance the low-level westward airflow in weak anticyclonic systems, causing dust accumulation in the west and north of the basin. Vertical mixing within the ABL during the daytime increases dust loading in the residual layer, and these dust particles can ascend to high altitudes after breaking through the ABL by the vertical circulation. The dust loading at the lower level during the daytime was higher than that at night, whereas the opposite was true for the upper level. The downward airflow in the northwest slope of the Tibetan plateau weakens at night, leading to dust being uplifted to higher altitudes and transported outside the Tarim Basin by the westerlies. These results enhance our understanding of dust distribution and related mechanisms in Tarim Basin and support the development and utilization of climatic resources in this region.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107764"},"PeriodicalIF":4.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction in Arctic sea ice amplifies the warming of the northern Indian Ocean 北极海冰的减少加剧了北印度洋的变暖
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-03 DOI: 10.1016/j.atmosres.2024.107763
Xiaojing Li, Jie Zhang, Xinyu Fang, Xizi Rao
{"title":"Reduction in Arctic sea ice amplifies the warming of the northern Indian Ocean","authors":"Xiaojing Li,&nbsp;Jie Zhang,&nbsp;Xinyu Fang,&nbsp;Xizi Rao","doi":"10.1016/j.atmosres.2024.107763","DOIUrl":"10.1016/j.atmosres.2024.107763","url":null,"abstract":"<div><div>The sea surface temperature (SST) in the tropical Indian Ocean(IO) has experienced rapid warming over the past 40 years. The reason for this phenomenon is still debated. Our study suggests that the decrease in Arctic sea ice during winter can influence the warming of SST in the Northern Indian Ocean (NIO) through three main pathway including atmospheric circulation, western Pacific SST and Tibet Plateau land. Firstly, the reduction of Arctic sea ice can trigger atmospheric teleconnection wave trains and circulation anomalies from the North Atlantic to the NIO, leading to anticyclone anomaly in the Bay of Bengal(BOB) that increases thermal contribution by radiation warming, as well as cyclonic anomalies in the Arabian Sea(AS) that increases dynamic contribution by warm current transport. Secondly, the reduction of Arctic sea ice can induce a wave train propagating from the Arctic through Eurasia to the western Pacific, resulting in anticyclone anomalies and SST rise in the South China Sea, thus enhancing the dynamic contribution of heat transfer through the Indonesian through flow(ITF). Thirdly,Arctic sea ice can enhances cross-equatorial flow by inducing warm surface temperature of the Tibetan Plateau.These three pathways will still exist until 2045 in future SSP245 emission scenarios.This study establishes a connection between the Arctic and the tropical IO, expanding our understanding of the relationship between these regions.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107763"},"PeriodicalIF":4.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Projected frequency of low to high-intensity rainfall events over India using bias-corrected CORDEX models 利用经过偏差校正的 CORDEX 模型预测印度上空低强度到高强度降雨事件的频率
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-03 DOI: 10.1016/j.atmosres.2024.107760
Alugula Boyaj , Palash Sinha , U.C. Mohanty , V. Vinoj , Karumuri Ashok , Sahidul Islam , A. Kaginalkar , M. Khare
{"title":"Projected frequency of low to high-intensity rainfall events over India using bias-corrected CORDEX models","authors":"Alugula Boyaj ,&nbsp;Palash Sinha ,&nbsp;U.C. Mohanty ,&nbsp;V. Vinoj ,&nbsp;Karumuri Ashok ,&nbsp;Sahidul Islam ,&nbsp;A. Kaginalkar ,&nbsp;M. Khare","doi":"10.1016/j.atmosres.2024.107760","DOIUrl":"10.1016/j.atmosres.2024.107760","url":null,"abstract":"<div><div>Heavy rainfall events and associated floods have emerged as one of the great threats to society that mainly manifested due the climate change. The Indian summer monsoon (ISM) contributes 80 % of annual rainfall and is characterized mainly by high-intensity rainfall events (HiREs) in the recent era. We investigated the spatiotemporal variability of HiREs from a climate change perspective by accessing the India Meteorological Department's (IMD) observed daily gridded rainfall dataset (0.25° × 0.25°) from 1961 to 2020 during the ISM season. Our observational analysis shows that the ISM total and the frequency of low- to high-intensity rainfall events have significantly decreased mostly over the central northeastern, Jammu and Kashmir, and some places in the northeastern and central parts of India. However, they have significantly increased over Gujarat, the northwestern, the Western Ghats, and the southern parts of India during the present climate period (1991–2020) compared to the past climate period (1961–1990). Furthermore, we explored the fidelity of five Coordinated Regional Climate Downscaling Experiments (CORDEX) Regional Climate Models (RCMs) in simulating the spatiotemporal variability of ISM total rainfall and the frequency of low- to high-intensity rainfall events over India during the historical (1976–2005) and future periods (2006–2100). All CORDEX RCMs overestimate the ISM total rainfall over India's heavy rainfall zones during the historical period by ∼10–30 % compared to IMD observations. To improve CORDEX RCM's skills in simulating the frequency of low- to high-intensity rainfall events, we employed a percentile-based bias correction technique. Compared to non-bias-corrected outputs from the RCMs, the quantile-bias-corrected method significantly enhanced the probability of detection rate (hit rate) in all studied models for extreme, heavy, and moderate rainfall events, excluding light rainfall events. Interestingly, the improvement is greater for extreme events, followed by heavy and moderate rainfall events. The composite hit rate of all the models shows 381 %, 146 %, and 44 % improvement for extreme, heavy, and moderate events, respectively. It is noticed that the CCCMA model performed better than the other four CORDEX models in capturing the spatial patterns of ISM total rainfall and the frequency of total extreme and heavy rainfall events over higher rainfall zones in India. Additionally, this study suggests that there will likely be no significant changes in ISM total rainfall over India in the future, but the frequency of total extreme and heavy rainfall events will most likely increase, while the frequency of moderate rainfall events will likely decrease mostly over southern parts of India in future projections.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107760"},"PeriodicalIF":4.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation of circulation characteristics of orographic precipitation in Qilian Mountains, Northeastern Tibetan Plateau 青藏高原东北部祁连山地貌降水环流特征数值模拟
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-03 DOI: 10.1016/j.atmosres.2024.107762
Linbo Wei , Lin Zhao , Zongyue Li , Yan Li , Qi Wen , Yuxia Ma
{"title":"Numerical simulation of circulation characteristics of orographic precipitation in Qilian Mountains, Northeastern Tibetan Plateau","authors":"Linbo Wei ,&nbsp;Lin Zhao ,&nbsp;Zongyue Li ,&nbsp;Yan Li ,&nbsp;Qi Wen ,&nbsp;Yuxia Ma","doi":"10.1016/j.atmosres.2024.107762","DOIUrl":"10.1016/j.atmosres.2024.107762","url":null,"abstract":"<div><div>In order to clarify the synoptic meteorology and low-level circulation characteristics of orographic precipitation in northeastern Tibetan Plateau (referred as TP), numerical simulation of a precipitation case that happened in Qilian Mountains on August 12–13, 2019 was conducted using the Weather Research and Forecasting (WRF) model in this paper. The results show that WRF model can roughly capture the timing and location of the orographic precipitation. During the period, a weak trough and a weak ridge were found behind a large-scale trough at 500 hPa at the initial and continuation phases primarily due to the effect of complicated topography to provide a beneficial circulation background at high altitudes. The extinction of this circulation pattern and northwesterly after the large-scale trough leaded to the extinction of the precipitation.</div><div>In lower levels, warm advection from the south and cold advection from the north met over the precipitation region, resulting to a dividing temperature line tilting northeast from surface to high-altitude, which was crucial for instability and humidity, although no significant converging wind field near the surface suffering from the complex topography. In addition, the low-level jet, downslope flow and heating role at the basin bottom were also found to play important roles in the precipitation. The above analysis indicates that the precipitation was a result under the combined influence of the westerly circulation and the plateau monsoon circulation.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107762"},"PeriodicalIF":4.5,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of vertical grid resolution and turbulent diffusion uncertainty on chemical transport modeling 垂直网格分辨率和湍流扩散不确定性对化学传输模型的作用
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-02 DOI: 10.1016/j.atmosres.2024.107759
Lei Jiang , Bertrand Bessagnet , Frédérik Meleux , Florian Couvidat , Frédéric Tognet , Jianlin Hu
{"title":"The role of vertical grid resolution and turbulent diffusion uncertainty on chemical transport modeling","authors":"Lei Jiang ,&nbsp;Bertrand Bessagnet ,&nbsp;Frédérik Meleux ,&nbsp;Florian Couvidat ,&nbsp;Frédéric Tognet ,&nbsp;Jianlin Hu","doi":"10.1016/j.atmosres.2024.107759","DOIUrl":"10.1016/j.atmosres.2024.107759","url":null,"abstract":"<div><div>Chemical transport models (CTM) tend to perform poorly in simulating pollution processes under weak turbulent diffusion conditions. In this study, we address this issue from the perspectives of vertical grid resolution and vertical mixing schemes. Three vertical grid resolution configurations (L4, L12, L40) with the CHIMERE model are evaluated during a winter episode, which includes a heavy pollution episode (PE) in the Paris region. The results emphasize the significance of vertical grid resolution, particularly noticeable during nighttime, and consequently impacts CHIMERE simulations under nocturnal stable conditions. Consistent improvement in CTM modeling is observed with refined vertical resolutions and the first layer height based on a simple linear vertical diffusion scheme defined as the initial <em>Kz</em> diffusion (IKD) scheme. Compared to the other two configurations, the finest configuration (referred to as L4-IKD) demonstrates an average improvement in root mean square error of 23.26 % and 25.09 % on regular days (RD) and 62 % and 129 % during PE, respectively. However, simulations using the 1.5-order turbulence kinetic energy (TKE) based eddy diffusivity closure scheme, named the new eddy diffusion (NED), are more sensitive to the first layer height setup. Excessively fine first-layer heights can lead to inaccurate TKE calculations. Generally, models with low vertical grid resolution can reasonably predict air quality on RD or during light pollution events but struggle with heavy PEs. One straightforward enhancement strategy involves adding an extra fine first layer height in CTM simulations, resulting in an average 50.10 % improvement from L4-IKD to L12-IKD during PE. Another strategy is enhancing the model's vertical diffusion scheme, which improved the CTM modeling by 26.67 % compared with IKD during PE under identical vertical grid resolution.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107759"},"PeriodicalIF":4.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revitalizing temperature records: A novel framework towards continuous data reconstruction using univariate and multivariate imputation techniques 振兴温度记录:利用单变量和多变量估算技术重建连续数据的新框架
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-02 DOI: 10.1016/j.atmosres.2024.107754
Hanumapura Kumaraswamy Yashas Kumar, Kumble Varija
{"title":"Revitalizing temperature records: A novel framework towards continuous data reconstruction using univariate and multivariate imputation techniques","authors":"Hanumapura Kumaraswamy Yashas Kumar,&nbsp;Kumble Varija","doi":"10.1016/j.atmosres.2024.107754","DOIUrl":"10.1016/j.atmosres.2024.107754","url":null,"abstract":"<div><div>Data gaps are a recurring challenge in climate research, hindering effective time series analysis and modeling. This study proposes a novel two-step data imputation framework to address temperature time series with a long continuous gap surrounded by predictor stations with sporadic missingness. The method leverages iterative gap-filling Singular Spectrum Analysis (SSA) for the small sporadic gaps, followed by multivariate techniques like Inverse Distance Weightage (IDW), Kriging, Spatial Regression Test (SRT), Point Estimation method of Biased Sentinel Hospital-based Area Disease Estimation (P-BSHADE), Random Forest (RF), Support Vector Machines (SVM), and MissForest (MF) for the longer gap. Once the sporadic gaps are effectively addressed with SSA, the method carefully applies multivariate techniques to impute the long continuous gap. Prioritizing accuracy, comprehensive cross-validation with class-based statistical indicators are employed to minimize any potential biases introduced by the imputation process. The study shows the effectiveness of SSA in filling small sporadic gaps using an optimal window length (M ≈ 365 days) and eigentriple grouping (ET = 30). Notably, for maximum temperature, P-BSHADE and SVM achieve an impressive accuracy (e.g., Legates's Coefficient of Efficiency (LCE), 0.75∼0.44, Combined Performance Index (CPI), 6.3%∼19.1%) attributed to their ability to capture spatial and/or temporal heterogeneity. While SRT and P-BSHADE offers acceptable performance for minimum temperature (e.g., LCE, 0.51∼0.27, CPI, 0.7%∼23.7%), the study also uncovers a complex interplay between missing data, predictor stations, and autocorrelation affecting imputation accuracy. This suggests that the reduced performance of certain techniques likely stems from the decline in spatial and spatiotemporal autocorrelation between the target station and its predictors. Overall, this study presents a promising framework for handling complex missing data scenarios often encountered in climate time series analysis, paving the way for more robust and reliable analysis and modeling.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107754"},"PeriodicalIF":4.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aircraft observation of aerosol and mixed-phase cloud microphysical over the North China Plain, China: Vertical distribution, size distribution, and effects of cloud seeding in two-layered clouds 飞机对中国华北平原上空气溶胶和混合相云微物理的观测:两层云的垂直分布、大小分布和云种子的影响
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-02 DOI: 10.1016/j.atmosres.2024.107758
Zihan Wang , Honglei Wang , Xiaobo Dong , Yang Yang , Yue Ke , Sihan Liu , Yi Cui , Kun Cui , Zihao Wu , Wen Lin
{"title":"Aircraft observation of aerosol and mixed-phase cloud microphysical over the North China Plain, China: Vertical distribution, size distribution, and effects of cloud seeding in two-layered clouds","authors":"Zihan Wang ,&nbsp;Honglei Wang ,&nbsp;Xiaobo Dong ,&nbsp;Yang Yang ,&nbsp;Yue Ke ,&nbsp;Sihan Liu ,&nbsp;Yi Cui ,&nbsp;Kun Cui ,&nbsp;Zihao Wu ,&nbsp;Wen Lin","doi":"10.1016/j.atmosres.2024.107758","DOIUrl":"10.1016/j.atmosres.2024.107758","url":null,"abstract":"<div><div>Aerosol and clouds are essential to climate effects. Based on an aircraft observation in a mixed-phase cloud in Shijiazhuang, China, on November 21, 2020, analyzing the vertical and size distributions of cloud droplets, and ice crystal particles, and the effects of the similar to a “seeder-feeder” process after cloud seeding on cloud microphysics. The first seeding cloud (CS1) and second seeding cloud (CS2) were at 2600–2800 m and 1500–2300 m, respectively. Before seeding, the average number concentration of cloud droplets (Nc) was 236.91 cm<sup>−3</sup> and 152.13 cm<sup>−3</sup> in CS1 and CS2 from vertical observation. In CS1, the average number concentration of ice crystals (Ni) was 0.26 L<sup>−1</sup> with dendritic ice crystals and graupel, while in CS2, the average Ni was 0.19 L<sup>−1</sup>, including rimed plate ice crystals, graupel, and needle ice crystals. After seeding, the average Nc decreased from 322.90 to 260.69 cm<sup>−3</sup> and the spectrum of Nc broadened from 2.5 to 24 to 45 μm in CS1. The ice microphysics also had different responses in the layered cloud. Ni increased by 421 times in regions with high Nc and low LWC (Nc &gt; 322.90 cm<sup>−3</sup>, LWC &lt; 0.14 g∙m<sup>−3</sup>), including spoked and heavily rimed ice crystals and graupel (200–500 μm) in CS1. In CS2, the maximum Ni was 252.03 L<sup>−1</sup> and the average Ni increased by 2 magnitudes (from 0.39 to 11.44 L<sup>−1</sup>). There were rimed needles and columnar ice crystals (200–300 μm) in regions with high Nc and high LWC (Nc &gt; 92.78 cm<sup>−3</sup>, LWC &gt; 0.13 g∙m<sup>−3</sup>), and high Nc and low LWC (Nc &gt; 92.78 cm<sup>−3</sup>, LWC &lt; 0.13 g∙m<sup>−3</sup>). Seeding in CS1 and CS2 formed a structure similar to the “seeder-feeder” process. Controlled by the downdraft (&gt;1 m/s), these particles descended into the “feeder” region of CS2. Appropriate temperature and rimed crystals contributed to secondary ice crystal production (SIP), resulting in main columns (200–300 μm) observed in CS2. The “feeder” region generated more ice crystals than the “seeder” region.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107758"},"PeriodicalIF":4.5,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of horizontal resolution and updated surface data on simulated low-level winds for the aviation safety over Incheon International Airport 水平分辨率和最新地表数据对仁川国际机场航空安全模拟低空风的影响
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-11-01 DOI: 10.1016/j.atmosres.2024.107753
Hyeon-Ji Lee , Hyeyum Hailey Shin , Kyo-Sun Sunny Lim , Sang-Hun Park
{"title":"Effects of horizontal resolution and updated surface data on simulated low-level winds for the aviation safety over Incheon International Airport","authors":"Hyeon-Ji Lee ,&nbsp;Hyeyum Hailey Shin ,&nbsp;Kyo-Sun Sunny Lim ,&nbsp;Sang-Hun Park","doi":"10.1016/j.atmosres.2024.107753","DOIUrl":"10.1016/j.atmosres.2024.107753","url":null,"abstract":"<div><div>This study aimed to alleviate the overestimation of low-level wind speeds at Incheon International Airport in South Korea by employing large eddy simulation (LES) modeling and high-resolution surface data. Simulation and observation data from two days on which potentially hazardous weather conditions near the airport were observed were selected for analysis: 12 August 2020, when strong winds were recorded, and 13 July 2020, when precipitation occurred. To investigate the impact of the horizontal resolution of the model and updated land surface data on low-level wind simulations, this study compared the simulation results of 1 km experiments with both 30-s United States Geological Survey topography and land use data and high-resolution 3-s surface data, including Shuttle Radar Topography Mission digital elevation model topography data and land use data generated by the Korean Ministry of Environment, and 100 m LES experiments with the high-resolution surface data. The observed 10-m wind speed and sonde data near the airport were used to evaluate the model results. Utilizing the updated high-resolution surface data in the 1 km model grid-spacing simulation led to a lower root mean square error and wind speed bias compared to the use of low-resolution surface data. The 100 m experiment incorporating LES modeling with the updated high-resolution surface data further improved the low-level wind simulation results compared to the 1 km experiment using the same high-resolution surface data. In addition to providing more accurate simulations of mean winds, turbulence variations over the airport and the nearby region are better resolved by using high-resolution LES modeling and combined with updated surface data, which are critical for ensuring aviation safety near the airport.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107753"},"PeriodicalIF":4.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the dynamics of shallow fronts in Australia during Southerly Buster episodes (1994–2020) 揭示澳大利亚浅锋面在南风巴斯特事件(1994-2020 年)期间的动态变化
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-10-31 DOI: 10.1016/j.atmosres.2024.107751
Gotzon Gangoiti , Eduardo Torre-Pascual, Ana Rodríguez-García, Estíbaliz Sáez de Cámara, María Carmen Gómez, Maite de Blas, José Antonio García, Estíbaliz García-Ruiz, Iñaki Zuazo
{"title":"Unveiling the dynamics of shallow fronts in Australia during Southerly Buster episodes (1994–2020)","authors":"Gotzon Gangoiti ,&nbsp;Eduardo Torre-Pascual,&nbsp;Ana Rodríguez-García,&nbsp;Estíbaliz Sáez de Cámara,&nbsp;María Carmen Gómez,&nbsp;Maite de Blas,&nbsp;José Antonio García,&nbsp;Estíbaliz García-Ruiz,&nbsp;Iñaki Zuazo","doi":"10.1016/j.atmosres.2024.107751","DOIUrl":"10.1016/j.atmosres.2024.107751","url":null,"abstract":"<div><div>A Frontal Identification System (FIS), initially designed to track Galernas in the Bay of Biscay, has been adapted to monitor cold fronts across Australia using wind shifts derived from ERA5 hourly reanalysis data. This high-resolution system tracks shallow, cloud-free fronts during the warm season, which can trigger bushfires, dust storms, extreme heat, and coastal weather extremes like Southerly Busters (SB) on the east coast. SB episodes, marked by sudden, squally south winds, pose hazards for boating and aviation. Our analysis of 35 SB events from 1994 to 2020 indicates that SBs originate from frontogenesis in Bass Strait (40 %) or from prefrontal troughs crossing the strait (60 %). Preceding synoptic conditions involve a Southern Ocean cold front driving cool maritime winds into the Australian thermal low, creating shallow convergence fronts (∼1000 m deep) facing warm continental winds. Onshore acceleration into the thermal low sharpens these new fronts (Type 2 fronts of the southern coast) and weakens the trailing primary ocean front, which may disappear due to high-pressure wave propagation, cold advection, and subsidence over the sea. These fronts can penetrate deep inland (Central Australian fronts) and initiate SBs on the southeast coast after interacting with the Great Dividing Range. All 35 SB events show active shallow front frontogenesis/frontolysis affecting the southern coast and inland regions. Upper-level reversed pressure gradients between the thermal low over the continent and the ocean depression maintain a wind shear region over the shallow inland cold advection. Intense warm north-westerlies south of the surface front, with wind speeds of 35–50 m s<sup>−1</sup> between 700 and 550 hPa, contribute to mesofront formation preceding SB episodes. This jet also sustains strong cross-mountain winds over the Great Dividing Range, causing the lee trough at the coastal strip that precedes all SB episodes on the eastern coast. Understanding these dynamics can help predict and manage these events more effectively.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107751"},"PeriodicalIF":4.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interdecadal variability in the dominant synoptic patterns responsible for the summer daily extreme precipitation over the Tarim Basin, Northwest China 造成中国西北塔里木盆地夏季日极端降水量的主要同步模式的年代际变化
IF 4.5 2区 地球科学
Atmospheric Research Pub Date : 2024-10-28 DOI: 10.1016/j.atmosres.2024.107746
Lianglu Qu , Yong Zhao , Junqiang Yao , Lixia Meng
{"title":"Interdecadal variability in the dominant synoptic patterns responsible for the summer daily extreme precipitation over the Tarim Basin, Northwest China","authors":"Lianglu Qu ,&nbsp;Yong Zhao ,&nbsp;Junqiang Yao ,&nbsp;Lixia Meng","doi":"10.1016/j.atmosres.2024.107746","DOIUrl":"10.1016/j.atmosres.2024.107746","url":null,"abstract":"<div><div>Revealing the synoptic patterns associated with extreme precipitation is important in deepening our understanding of extreme precipitation formation. To examine whether the synoptic patterns responsible for the summer extreme precipitation (SEP) have experienced an interdecadal variability over the Tarim Basin (TB), we investigate and compare the synoptic patterns influencing regional SEP over the TB under different interdecadal backgrounds. Results show the SEP over the TB has experienced three distinct periods (1961–1987: dry period; 1988–2009: wet period I; 2010–2023: wet period II) and can be categorized into two dominant patterns, western pattern, and eastern pattern, respectively. The western and eastern patterns of SEP are dominated by the large-scale circulations characterized by directly influenced circulations: Subtropical Westerly Jet (SWJ), Central Asian Cyclone (CAC) and low-level easterly jet/cyclone, which affect the dynamics conditions, as well as indirectly influenced circulations: South Asian High (SAH), Iranian Subtropical High (ISH), Western Pacific Subtropical High (WPSH), Mongolian Anticyclone (MAC) and Siberian Ridge, which modulate water vapor transport. During the Dry Period to Wet Period II, with the increasing influence of the WPSH and MAC, the source and path of water vapor transport yielded an interdecadal adjustment from the Arabian Sea to the Bay of Bengal to the western Pacific Ocean. Regarding the SEP-dominant transition, the differences between the patterns are the location of the SWJ, CAC, and MAC, resulting in substantially different water vapor transport. In the western pattern, the change occurs mainly in the western water vapor path, whereas in the eastern pattern, it is the eastern water vapor that undergoes interdecadal changes. Moreover, discrepancies in the variations of ISH and WPSH in sub-periods not only contribute to the interdecadal variations, but also are responsible for variances between patterns.</div></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":"312 ","pages":"Article 107746"},"PeriodicalIF":4.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信