Lab on a ChipPub Date : 2024-09-03DOI: 10.1039/D4LC00546E
Nicolai Winter-Hjelm, Pawel Sikorski, Axel Sandvig and Ioanna Sandvig
{"title":"Engineered cortical microcircuits for investigations of neuroplasticity†","authors":"Nicolai Winter-Hjelm, Pawel Sikorski, Axel Sandvig and Ioanna Sandvig","doi":"10.1039/D4LC00546E","DOIUrl":"10.1039/D4LC00546E","url":null,"abstract":"<p >Recent advances in neural engineering have opened new ways to investigate the impact of topology on neural network function. Leveraging microfluidic technologies, it is possible to establish modular circuit motifs that promote both segregation and integration of information processing in the engineered neural networks, similar to those observed <em>in vivo</em>. However, the impact of the underlying topologies on network dynamics and response to pathological perturbation remains largely unresolved. In this work, we demonstrate the utilization of microfluidic platforms with 12 interconnected nodes to structure modular, cortical engineered neural networks. By implementing geometrical constraints inspired by a Tesla valve within the connecting microtunnels, we additionally exert control over the direction of axonal outgrowth between the nodes. Interfacing these platforms with nanoporous microelectrode arrays reveals that the resulting laminar cortical networks exhibit pronounced segregated and integrated functional dynamics across layers, mirroring key elements of the feedforward, hierarchical information processing observed in the neocortex. The multi-nodal configuration also facilitates selective perturbation of individual nodes within the networks. To illustrate this, we induced hypoxia, a key factor in the pathogenesis of various neurological disorders, in well-connected nodes within the networks. Our findings demonstrate that such perturbations induce ablation of information flow across the hypoxic node, while enabling the study of plasticity and information processing adaptations in neighboring nodes and neural communication pathways. In summary, our presented model system recapitulates fundamental attributes of the microcircuit organization of neocortical neural networks, rendering it highly pertinent for preclinical neuroscience research. This model system holds promise for yielding new insights into the development, topological organization, and neuroplasticity mechanisms of the neocortex across the micro- and mesoscale level, in both healthy and pathological conditions.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-02DOI: 10.1039/D4LC00547C
Micaela Oliveira, Partha Protim Sarker, Ilya Skovorodkin, Ali Kalantarifard, Tugce Haskavuk, Jonatan Mac Intyre, Elizabath Nallukunnel Raju, Samin Nooranian, Hiroki Shioda, Masaki Nishikawa, Yasuyuki Sakai, Seppo J. Vainio, Caglar Elbuken and Irina Raykhel
{"title":"From ex ovo to in vitro: xenotransplantation and vascularization of mouse embryonic kidneys in a microfluidic chip†","authors":"Micaela Oliveira, Partha Protim Sarker, Ilya Skovorodkin, Ali Kalantarifard, Tugce Haskavuk, Jonatan Mac Intyre, Elizabath Nallukunnel Raju, Samin Nooranian, Hiroki Shioda, Masaki Nishikawa, Yasuyuki Sakai, Seppo J. Vainio, Caglar Elbuken and Irina Raykhel","doi":"10.1039/D4LC00547C","DOIUrl":"10.1039/D4LC00547C","url":null,"abstract":"<p >Organoids are emerging as a powerful tool to investigate complex biological structures <em>in vitro</em>. Vascularization of organoids is crucial to recapitulate the morphology and function of the represented human organ, especially in the case of the kidney, whose primary function of blood filtration is closely associated with blood circulation. Current <em>in vitro</em> microfluidic approaches have only provided initial vascularization of kidney organoids, whereas <em>in vivo</em> transplantation to animal models is problematic due to ethical problems, with the exception of xenotransplantation onto a chicken chorioallantoic membrane (CAM). Although CAM can serve as a good environment for vascularization, it can only be used for a fixed length of time, limited by development of the embryo. Here, we propose a novel lab on a chip design that allows organoids of different origin to be cultured and vascularized on a CAM, as well as to be transferred to <em>in vitro</em> conditions when required. Mouse embryonic kidneys cultured on the CAM showed enhanced vascularization by intrinsic endothelial cells, and made connections with the chicken vasculature, as evidenced by blood flowing through them. After the chips were transferred to <em>in vitro</em> conditions, the vasculature inside the organoids was successfully maintained. To our knowledge, this is the first demonstration of the combination of <em>in vivo</em> and <em>in vitro</em> approaches applied to microfluidic chip design.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00547c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142117987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-02DOI: 10.1039/D4LC00552J
Mitsuyuki Hidaka, Masaru Kojima and Shinji Sakai
{"title":"Micromixer driven by bubble-induced acoustic microstreaming for multi-ink 3D bioprinting†","authors":"Mitsuyuki Hidaka, Masaru Kojima and Shinji Sakai","doi":"10.1039/D4LC00552J","DOIUrl":"10.1039/D4LC00552J","url":null,"abstract":"<p >Recently, the 3D printing of cell-laden hydrogel structures, known as bioprinting, has received increasing attention owing to advances in tissue engineering and drug screening. However, a micromixing technology that efficiently mixes viscous bioinks under mild conditions is needed. Therefore, this study presents a novel method for achieving homogeneous mixing of multiple inks in 3D bioprinting through acoustic stimulation. This technique involves generating an acoustic microstream through bubble oscillations inside a 3D bioprinting nozzle. We determined the optimal hole design for trapping a bubble, hole arrangement, and voltage for efficient mixing, resulting in a four-fold increase in mixing efficiency compared to a single bubble arrangement. Subsequently, we propose a nozzle design for efficient mixing during bioprinting. The proposed nozzle design enabled the successful printing of line structures with a uniform mixture of different viscous bioinks, achieving a mixing efficiency of over 80% for mixing 0.5–1.0 wt% sodium alginate aqueous solutions. Additionally, acoustic stimulation had no adverse effects on cell viability, maintaining a high cell viability of 88% after extrusion. This study presents the first use of a bubble micromixer in 3D bioprinting, demonstrating gentle yet effective multi-ink mixing. We believe this approach will broaden 3D printing applications, particularly for constructing functional structures in 3D bioprinting.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-08-30DOI: 10.1039/D4LC00486H
Wenwen Chen, Hao Li, Xinyue Zhang, Yutao Sang and Zhihong Nie
{"title":"Microfluidic preparation of monodisperse PLGA-PEG/PLGA microspheres with controllable morphology for drug release†","authors":"Wenwen Chen, Hao Li, Xinyue Zhang, Yutao Sang and Zhihong Nie","doi":"10.1039/D4LC00486H","DOIUrl":"10.1039/D4LC00486H","url":null,"abstract":"<p >Monodisperse biodegradable polymer microspheres show broad applications in drug delivery and other fields. In this study, we developed an effective method that combines microfluidics with interfacial instability to prepare monodispersed poly(lactic-<em>co</em>-glycolic acid)-<em>b</em>-polyethylene glycol (PLGA-PEG)/poly(lactic-<em>co</em>-glycolic acid) (PLGA) microspheres with tailored surface morphology. By adjusting the mass ratio of PLGA-PEG to PLGA, the concentration of stabilizers and the type of PLGA, we generated microspheres with various unique folded morphologies, such as “fishtail-like”, “lace-like” and “sponge-like” porous structures. Additionally, we demonstrated that risperidone-loaded PLGA-PEG/PLGA microspheres with these folded morphologies significantly enhanced drug release, particularly in the initial stage, by exhibiting a logarithmic release profile. This feature could potentially address the issue of delayed release commonly observed in sustained-release formulations. This study presents a straightforward yet effective approach to construct precisely engineered microspheres offering enhanced control over drug release dynamics.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-08-30DOI: 10.1039/D4LC00413B
Deasung Jang, Kerryn Matthews, Pan Deng, Samuel G. Berryman, Cuilan Nian, Simon P. Duffy, Francis C. Lynn and Hongshen Ma
{"title":"Single cell glucose-stimulated insulin secretion assay using nanowell-in-microwell plates†","authors":"Deasung Jang, Kerryn Matthews, Pan Deng, Samuel G. Berryman, Cuilan Nian, Simon P. Duffy, Francis C. Lynn and Hongshen Ma","doi":"10.1039/D4LC00413B","DOIUrl":"10.1039/D4LC00413B","url":null,"abstract":"<p >Pancreatic β cells secrete insulin in response to elevated levels of glucose. Stem cell derived β (SCβ) cells aim to replicate this glucose-stimulated insulin secretion (GSIS) function, but current preparations cannot provide the same level of insulin as natural β cells. Here, we develop an assay to measure GSIS at the single cell level to investigate the functional heterogeneity of SCβ cells and donor-derived islet cells. Our assay involves randomly depositing single cells and insulin capture microbeads in open-top nanowells (40 × 40 × 55 μm<small><sup>3</sup></small>) fabricated on glass-bottom imaging microwell plates. Insulin secreted from single cells is captured on microbeads and then stained using a detection antibody. The nanowell microstructure limits diffusion of secreted insulin. The glass substrate provides an optically flat surface for quantitative microscopy to measure the concentration of secreted insulin. We used this approach to measure GSIS from SCβ cells and donor-derived islet cells after 15 minutes exposure to 3.3 mM and 16.7 mM glucose. Both cell types exhibited significant GSIS heterogeneity, where elite cells (<20%) produced the majority of the secreted insulin (55–78%). This assay provides an immediate readout of single cell glucose-stimulated insulin secretion in a flexible well plate-based format.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142102315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-08-29DOI: 10.1039/D4LC00436A
Haozheng Ma, Sina Khazaee Nejad, Daniel Vargas Ramos, Abdulrahman Al-Shami, Ali Soleimani, Farbod Amirghasemi, Mona A. Mohamed and Maral P. S. Mousavi
{"title":"Lab-on-a-lollipop (LoL) platform for preventing food-induced toxicity: all-in-one system for saliva sampling and electrochemical detection of vanillin†","authors":"Haozheng Ma, Sina Khazaee Nejad, Daniel Vargas Ramos, Abdulrahman Al-Shami, Ali Soleimani, Farbod Amirghasemi, Mona A. Mohamed and Maral P. S. Mousavi","doi":"10.1039/D4LC00436A","DOIUrl":"10.1039/D4LC00436A","url":null,"abstract":"<p >Saliva has emerged as a primary biofluid for non-invasive disease diagnostics. Saliva collection involves using kits where individuals stimulate saliva production <em>via</em> a chewing device like a straw, then deposit the saliva into a designated collection tube. This process may pose discomfort to patients due to the necessity of producing large volumes of saliva and transferring it to the collection vessel. This work has developed a saliva collection and analysis device where the patient operates it like a lollipop, stimulating saliva production. The lollipop-mimic device contains yarn-based microfluidic channels that sample saliva and transfer it to the sensing zone embedded in the stem of the device. We have embedded electrochemical sensors in the lollipop platform to measure vanillin levels in saliva. Vanillin is the most common food flavoring additive and is added to most desserts such as ice cream, cakes, and cookies. Overconsumption of vanillin can cause side effects such as muscle weakness, and damage to the liver, kidneys, stomach, and lungs. We detected vanillin using direct oxidation at a laser-induced graphene (LIG) electrode. We showed a dynamic range of 2.5 μM to 30 μM, covering the physiologically relevant concentration of vanillin in saliva. The lab-on-a-lollipop platform requires only 200 μL of saliva and less than 2 minutes to fill the channels and complete the measurement. This work introduces the first sensor-embedded lollipop-mimic saliva collection and measurement system.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-08-28DOI: 10.1039/D4LC00588K
Yunyun Wu, Xinming Li, Kenneth E. Madsen, Haohui Zhang, Soongwon Cho, Ruihao Song, Ravi F. Nuxoll, Yirui Xiong, Jiaqi Liu, Jingyuan Feng, Tianyu Yang, Kaiqing Zhang, Alexander J. Aranyosi, Donald E. Wright, Roozbeh Ghaffari, Yonggang Huang, Ralph G. Nuzzo and John A. Rogers
{"title":"Skin-interfaced microfluidic biosensors for colorimetric measurements of the concentrations of ketones in sweat†","authors":"Yunyun Wu, Xinming Li, Kenneth E. Madsen, Haohui Zhang, Soongwon Cho, Ruihao Song, Ravi F. Nuxoll, Yirui Xiong, Jiaqi Liu, Jingyuan Feng, Tianyu Yang, Kaiqing Zhang, Alexander J. Aranyosi, Donald E. Wright, Roozbeh Ghaffari, Yonggang Huang, Ralph G. Nuzzo and John A. Rogers","doi":"10.1039/D4LC00588K","DOIUrl":"10.1039/D4LC00588K","url":null,"abstract":"<p >Ketones, such as beta-hydroxybutyrate (BHB), are important metabolites that can be used to monitor for conditions such as diabetic ketoacidosis (DKA) and ketosis. Compared to conventional approaches that rely on samples of urine or blood evaluated using laboratory techniques, processes for monitoring of ketones in sweat using on-body sensors offer significant advantages. Here, we report a class of soft, skin-interfaced microfluidic devices that can quantify the concentrations of BHB in sweat based on simple and low-cost colorimetric schemes. These devices combine microfluidic structures and enzymatic colorimetric BHB assays for selective and accurate analysis. Human trials demonstrate the broad applicability of this technology in practical scenarios, and they also establish quantitative correlations between the concentration of BHB in sweat and in blood. The results represent a convenient means for managing DKA and aspects of personal nutrition/wellness.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00588k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-08-28DOI: 10.1039/D4LC00406J
Dipesh Aggarwal, Richard Piffer Soares de Campos, Abebaw B. Jemere, Adam Johan Bergren and Nikola Pekas
{"title":"Integration of complementary split-ring resonators into digital microfluidics for manipulation and direct sensing of droplet composition†","authors":"Dipesh Aggarwal, Richard Piffer Soares de Campos, Abebaw B. Jemere, Adam Johan Bergren and Nikola Pekas","doi":"10.1039/D4LC00406J","DOIUrl":"10.1039/D4LC00406J","url":null,"abstract":"<p >This paper demonstrates the integration of complementary split-ring resonators (CSSRs) with digital microfluidics (DMF) sample manipulation for passive, on-chip radio-frequency (RF) sensing. Integration is accomplished by having the DMF and the RF-sensing components share the same ground plane: by designing the RF-resonant openings directly into the ground plane of a DMF device, both droplet motion and sensing are achieved, adding a new on-board detection mode for use in DMF. The system was modelled to determine basic features and to balance various factors that need to be optimized to maintain both functionalities (DMF-enabled droplet movement and RF detection) on the same chip. Simulated and experimental results show good agreement. Using a portable measurement setup, the integrated CSSR sensor was used to effectively identify a series of DMF-generated drops of ethanol–water mixtures of different compositions by measuring the resonant frequency of the CSSR. In addition, we show that a binary solvent system (ethanol/water mixtures) results in consistent changes in the measured spectrum in response to changes in concentration, indicating that the sensor can distinguish not only between pure solvents from each other, but also between mixtures of varied compositions. We anticipate that this system can be refined further to enable additional applications and detection modes for DMF systems and other portable sensing platforms alike. This proof-of-principle study demonstrates that the integrated DMF–CSSR sensor provides a new platform for monitoring and characterization of liquids with high sensitivity and low consumption of materials, and opens the way for new and exciting applications of RF sensing in microfluidics.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00406j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142090396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-08-27DOI: 10.1039/D4LC00354C
Matt D. Nelson, Patrick A. Tresco, Christian C. Yost and Bruce K. Gale
{"title":"Achieving biocompatibility and tailoring mechanical properties of SLA 3D printed devices for microfluidic and cell culture applications","authors":"Matt D. Nelson, Patrick A. Tresco, Christian C. Yost and Bruce K. Gale","doi":"10.1039/D4LC00354C","DOIUrl":"10.1039/D4LC00354C","url":null,"abstract":"<p >Stereolithography (SLA) and other photopolymerization-based additive manufacturing approaches are becoming popular for the fabrication of microfluidic devices and cell-infused platforms, but many of the resins employed in these techniques are cytotoxic to cells or do not have the appropriate mechanical properties for microfluidic components. Here, using a commercially available resin, we demonstrate that biocompatibility and a range of mechanical properties can be achieved through post-print optimization involving baking, soaking, network swelling, and UV exposure. We show that UV-vis spectrophotometry can be used to detect methacrylate monomer/oligomer, and utilizing this method, we found that baking at 120 °C for 24 hours was the optimal method for removing cytotoxic chemical species and creating nontoxic cell culture platforms, though UV exposure and soaking in 100% ethanol also can substantially reduce cytotoxicity. Furthermore, we show that the mechanical properties can be modified, including up to 50% for the Young's modulus and an order of magnitude for the flexural modulus, through the post-processing approach employed. Based on the study results, users can choose post-processing approaches to achieve needed cytotoxicity and mechanical profiles, simultaneously.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-08-26DOI: 10.1039/D4LC00672K
Weihong Yin, Kai Hu, Bingwen Yu, Tao Zhang, Haohua Mei, Bowen Zhang, Zheyu Zou, Liping Xia, Yehong Gui, Juxing Yin, Wei Jin and Ying Mu
{"title":"Fast and sensitive detection of viable Escherichia coli O157:H7 using a microwell-confined and propidium monoazide-assisted digital CRISPR microfluidic platform†","authors":"Weihong Yin, Kai Hu, Bingwen Yu, Tao Zhang, Haohua Mei, Bowen Zhang, Zheyu Zou, Liping Xia, Yehong Gui, Juxing Yin, Wei Jin and Ying Mu","doi":"10.1039/D4LC00672K","DOIUrl":"10.1039/D4LC00672K","url":null,"abstract":"<p > <em>Escherichia coli</em> O157:H7 is a major foodborne pathogen that poses a significant threat to food safety and human health. Rapid and sensitive detection of viable <em>Escherichia coli</em> O157:H7 can effectively prevent food poisoning. Here, we developed a microwell-confined and propidium monoazide-assisted digital CRISPR microfluidic platform for rapid and sensitive detection of viable <em>Escherichia coli</em> O157:H7 in food samples. The reaction time is significantly reduced by minimizing the microwell volume, yielding qualitative results in 5 min and absolute quantitative results in 15 min. With the assistance of propidium monoazide, this platform can eliminate the interference from 99% of dead <em>Escherichia coli</em> O157:H7. The direct lysis method obviates the need for a complex nucleic acid extraction process, offering a limit of detection of 3.6 × 10<small><sup>1</sup></small> CFU mL<small><sup>−1</sup></small> within 30 min. Our results demonstrated that the platform provides a powerful tool for rapid detection of <em>Escherichia coli</em> O157:H7 and provides reliable guidance for food safety testing.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142085383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}