Lab on a ChipPub Date : 2024-09-11DOI: 10.1039/D4LC00504J
Jan Majer, Aneesh Alex, Jindou Shi, Eric J. Chaney, Prabuddha Mukherjee, Darold R. Spillman, Marina Marjanovic, Carla F. Newman, Reid M. Groseclose, Peter D. Watson, Stephen A. Boppart and Steve R. Hood
{"title":"Multimodal imaging of a liver-on-a-chip model using labelled and label-free optical microscopy techniques†","authors":"Jan Majer, Aneesh Alex, Jindou Shi, Eric J. Chaney, Prabuddha Mukherjee, Darold R. Spillman, Marina Marjanovic, Carla F. Newman, Reid M. Groseclose, Peter D. Watson, Stephen A. Boppart and Steve R. Hood","doi":"10.1039/D4LC00504J","DOIUrl":"10.1039/D4LC00504J","url":null,"abstract":"<p >A liver-on-a-chip model is an advanced complex <em>in vitro</em> model (CIVM) that incorporates different cell types and extracellular matrix to mimic the microenvironment of the human liver in a laboratory setting. Given the heterogenous and complex nature of liver-on-a-chip models, brightfield and fluorescence-based imaging techniques are widely utilized for assessing the changes occurring in these models with different treatment and environmental conditions. However, the utilization of optical microscopy techniques for structural and functional evaluation of the liver CIVMs have been limited by the reduced light penetration depth and lack of 3D information obtained using these imaging techniques. In this study, the potential of both labelled as well as label-free multimodal optical imaging techniques for visualization and characterization of the cellular and sub-cellular features of a liver-on-a-chip model was investigated. (1) Cellular uptake and distribution of Alexa 488 (A488)-labelled non-targeted and targeted antisense oligonucleotides (ASO and ASO-GalNAc) in the liver-on-a-chip model was determined using multiphoton microscopy. (2) Hyperspectral stimulated Raman scattering (SRS) microscopy of the C–H region was used to determine the heterogeneity of chemical composition of circular and cuboidal hepatocytes in the liver-on-a-chip model in a label-free manner. Additionally, the spatial overlap between the intracellular localization of ASO and lipid droplets was explored using simultaneous hyperspectral SRS and fluorescence microscopy. (3) The capability of light sheet fluorescence microscopy (LSFM) for full-depth 3D visualization of sub-cellular distribution of A488-ASO and cellular phenotypes in the liver-on-a-chip model was demonstrated. In summary, multimodal optical microscopy is a promising platform that can be utilized for visualization and quantification of 3D cellular organization, drug distribution and functional changes occurring in liver-on-a-chip models, and can provide valuable insights into liver biology and drug uptake mechanisms by enabling better characterization of these liver models.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00504j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-10DOI: 10.1039/D4LC00371C
Zongjun Ma, Delai Kong, Wenfeng Cai, Zhenming Wang, Ming Cheng, Zixuan Wu, Xueqian Zhao, Mengjia Cen, Haitao Dai, Shifeng Guo and Yan Jun Liu
{"title":"Generating Airy surface acoustic waves with dislocated interdigital transducers†","authors":"Zongjun Ma, Delai Kong, Wenfeng Cai, Zhenming Wang, Ming Cheng, Zixuan Wu, Xueqian Zhao, Mengjia Cen, Haitao Dai, Shifeng Guo and Yan Jun Liu","doi":"10.1039/D4LC00371C","DOIUrl":"10.1039/D4LC00371C","url":null,"abstract":"<p >We propose an innovative design for interdigital transducers (IDTs), enabling phase modulation of surface acoustic waves (SAWs) with a dislocated electrode structure. By designing the size and arrangement of these dislocated IDTs, a novel type of Airy SAWs can be generated, exhibiting self-accelerating, self-bending, and self-healing characteristics. The acceleration of the generated Airy SAW is 0.081 cm<small><sup>−1</sup></small>. Furthermore, particles and bubbles can be precisely manipulated using the generated Airy SAW. The proposed dislocated IDTs could be used for generation of many other types of SAWs, hence holding great promise for applications including SAW shaping, particle manipulation/sorting, and acoustic sensing/detection.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-09DOI: 10.1039/D4LC00455H
Sasha Cai Lesher-Pérez, Vishwa Vasani, Jihye So and Shuichi Takayama
{"title":"Forced air oscillations – pneumatic capacitance in microfluidic oscillators produces non-linear responses and emergent behaviors†","authors":"Sasha Cai Lesher-Pérez, Vishwa Vasani, Jihye So and Shuichi Takayama","doi":"10.1039/D4LC00455H","DOIUrl":"10.1039/D4LC00455H","url":null,"abstract":"<p >Pneumatic control mechanisms have long been integral to microfluidic systems, primarily using solenoid valves, pressurized gases, and vacuums to direct liquid flow. Despite advancements in liquid-driven self-regulated microfluidic circuits, gas-driven systems leveraging fluid compressibility remain underexplored. This study presents a mathematical and experimental investigation of gas-driven microfluidic circuits, focusing on forced-air oscillators. We derive and validate a first-principles model of microfluidic circuit elements operated under positive pressurization, using a ‘molecular packets’ analogy to elucidate compressibility effects. Our findings reveal that gas compressibility impacts circuit behavior, by acting similar to a large capacitor in the system, which inherently results in longer oscillation periods. As the syringe evacuates, the capacitance decreases, which in turn reduces the oscillation period. Experimental validation of our system demonstrates persistent behavior when using forced air to drive the microfluidic oscillators, this includes assessing devices with various PDMS membrane thicknesses, as well as evaluating device performance under different flow rates and syringe sizes. The forced air oscillators exhibited decreasing periods and capacitance over time, aligning with our theoretical predictions.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00455h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-06DOI: 10.1039/D4LC00715H
Hanjia Zheng, Fatemeh Keyvani, Sadegh Sadeghzadeh, Dragos F. Mantaila, Fasih A. Rahman, Joe Quadrilatero and Mahla Poudineh
{"title":"Rapid miRNA detection in skin interstitial fluid using a hydrogel microneedle patch integrated with DNA probes and graphene oxide†","authors":"Hanjia Zheng, Fatemeh Keyvani, Sadegh Sadeghzadeh, Dragos F. Mantaila, Fasih A. Rahman, Joe Quadrilatero and Mahla Poudineh","doi":"10.1039/D4LC00715H","DOIUrl":"10.1039/D4LC00715H","url":null,"abstract":"<p >MicroRNA (miRNA) is a type of short, non-coding nucleic acid molecule that plays essential roles in diagnosing and prognosing various types of cancer. MiRNA is abundantly present in skin interstitial fluid (ISF), providing real-time and localized physiological information. Hydrogel microneedle (HMN) patches enable miRNA collection in a fast, pain-free, minimally invasive, and user-friendly manner. In this study, we introduced a fluorescence-based HMN assay, namely the HMN-miR sensor, composed of methacrylated hyaluronic acid (MeHA) and a graphene oxide–probe DNA (GO.pDNA) conjugate for miR21 and miR210 detection. The HMN-miR sensor demonstrates excellent skin penetration efficiency, rapid ISF collection capability, and sufficient miRNA detection and sequence identification specificity. The HMN-miR sensor facilitates a new assay that, with further optimization, could be applied in future clinical settings. Its simple fabrication process and excellent biocompatibility give it significant potential for various clinical uses, such as personalized cancer treatment and monitoring the healing progress of burn wounds.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-06DOI: 10.1039/D4LC00325J
Stelios Chatzimichail, Piers Turner, Conor Feehily, Alison Farrar, Derrick Crook, Monique Andersson, Sarah Oakley, Lucinda Barrett, Hafez El Sayyed, Jingwen Kyropoulos, Christoffer Nellåker, Nicole Stoesser and Achillefs N. Kapanidis
{"title":"Rapid identification of bacterial isolates using microfluidic adaptive channels and multiplexed fluorescence microscopy†","authors":"Stelios Chatzimichail, Piers Turner, Conor Feehily, Alison Farrar, Derrick Crook, Monique Andersson, Sarah Oakley, Lucinda Barrett, Hafez El Sayyed, Jingwen Kyropoulos, Christoffer Nellåker, Nicole Stoesser and Achillefs N. Kapanidis","doi":"10.1039/D4LC00325J","DOIUrl":"10.1039/D4LC00325J","url":null,"abstract":"<p >We demonstrate the rapid capture, enrichment, and identification of bacterial pathogens using Adaptive Channel Bacterial Capture (ACBC) devices. Using controlled tuning of device backpressure in polydimethylsiloxane (PDMS) devices, we enable the controlled formation of capture regions capable of trapping bacteria from low cell density samples with near 100% capture efficiency. The technical demands to prepare such devices are much lower compared to conventional methods for bacterial trapping and can be achieved with simple benchtop fabrication methods. We demonstrate the capture and identification of seven species of bacteria with bacterial concentrations lower than 1000 cells per mL, including common Gram-negative and Gram-positive pathogens such as <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. We further demonstrate that species identification of the trapped bacteria can be undertaken in the order of one-hour using multiplexed 16S rRNA-FISH with identification accuracies of 70–98% with unsupervised classification methods across 7 species of bacteria. Finally, by using the bacterial capture capabilities of the ACBC chip with an ultra-rapid antimicrobial susceptibility testing method employing fluorescence imaging and convolutional neural network (CNN) classification, we demonstrate that we can use the ACBC chip as an imaging flow cytometer that can predict the antibiotic susceptibility of <em>E. coli</em> cells after identification.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00325j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-05DOI: 10.1039/D4LC00340C
Xu Qian, Qiang Xu, Christopher J. Lyon and Tony Y. Hu
{"title":"CRISPR for companion diagnostics in low-resource settings†","authors":"Xu Qian, Qiang Xu, Christopher J. Lyon and Tony Y. Hu","doi":"10.1039/D4LC00340C","DOIUrl":"10.1039/D4LC00340C","url":null,"abstract":"<p >New point-of-care tests (POCTs), which are especially useful in low-resource settings, are needed to expand screening capacity for diseases that cause significant mortality: tuberculosis, multiple cancers, and emerging infectious diseases. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostic (CRISPR-Dx) assays have emerged as powerful and versatile alternatives to traditional nucleic acid tests, revealing a strong potential to meet this need for new POCTs. In this review, we discuss CRISPR-Dx assay techniques that have been or could be applied to develop POCTs, including techniques for sample processing, target amplification, multiplex assay design, and signal readout. This review also describes current and potential applications for POCTs in disease diagnosis and includes future opportunities and challenges for such tests. These tests need to advance beyond initial assay development efforts to broadly meet criteria for use in low-resource settings.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00340c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-04DOI: 10.1039/D4LC00490F
Gwang Myeong Seo, Hongki Lee, Yeon Jae Kang, Donghyun Kim and Jong Hwan Sung
{"title":"Development of in vitro model of exosome transport in microfluidic gut-brain axis-on-a-chip","authors":"Gwang Myeong Seo, Hongki Lee, Yeon Jae Kang, Donghyun Kim and Jong Hwan Sung","doi":"10.1039/D4LC00490F","DOIUrl":"10.1039/D4LC00490F","url":null,"abstract":"<p >The gut communicates with the brain in a variety of ways known as the gut–brain axis (GBA), which is known to affect neurophysiological functions as well as neuronal disorders. Exosomes capable of passing through the blood–brain-barrier (BBB) have received attention as a mediator of gut–brain signaling and drug delivery vehicles. In conventional well plate-based experiments, it is difficult to observe the exosome movement in real time. Here, we developed a microfluidic-based GBA chip for co-culturing gut epithelial cells and neuronal cells and simultaneously observing exosome transport. The GBA-chip is aimed to mimic the <em>in vivo</em> situation of convective flow in blood vessels and convective and diffusive transport in the tissue interstitium. Here, fluorescence-labeled exosome was produced by transfection of HEK-293T cells with CD63-GFP plasmid. We observed in real time the secretion of CD63-GFP-exosomes by the transfected HEK-293T cells in the chip, and transport of the exosomes to neuronal cells and analyzed the dynamics of GFP-exosome movement. Our model is expected to enhance understanding of the roles of exosome in GBA.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-04DOI: 10.1039/D3LC00442B
Camila Vesga-Castro, Laura Mosqueira-Martín, Paul Ubiria-Urkola, Pablo Marco-Moreno, Klaudia González-Imaz, Jorge Rendon-Hinestroza, Ainara Vallejo-Illarramendi and Jacobo Paredes
{"title":"Development of an in vitro platform for the analysis of contractile and calcium dynamics in single human myotubes†","authors":"Camila Vesga-Castro, Laura Mosqueira-Martín, Paul Ubiria-Urkola, Pablo Marco-Moreno, Klaudia González-Imaz, Jorge Rendon-Hinestroza, Ainara Vallejo-Illarramendi and Jacobo Paredes","doi":"10.1039/D3LC00442B","DOIUrl":"10.1039/D3LC00442B","url":null,"abstract":"<p > <em>In vitro</em> myotube cultures are widely used as models for studying muscle pathophysiology, but their limited maturation and heterogeneity pose significant challenges for functional analyses. While they remain the gold standard for studying muscle function <em>in vitro</em>, myotube cultures do not fully recapitulate the complexity and native features of muscle fibers, which may compromise their ability to predict <em>in vivo</em> outcomes. To promote maturation and decrease heterogeneity, we have incorporated engineered structures into myotube cultures, based on a PDMS thin layer with micrometer-sized grooves (μGrooves) placed over a glass substrate. Different sizes and shapes of μGrooves were tested for their ability to promote alignment and fusion of myoblasts and enhance their differentiation into myotubes. A 24 hour electrical field stimulation protocol (4 V, 6 ms, 0.1 Hz) was used to further promote myotube maturation, after which several myotube features were assessed, including myotube alignment, width, fusion index, contractile function, and calcium handling. Our results indicate superior calcium and contractile performance in μGrooved myotubes, particularly with the 100 μm-width 700 μm-long geometry (7 : 1). This platform generated homogeneous and isolated myotubes that reproduced native muscle features, such as excitation–contraction coupling and force-frequency responses. Overall, our 2D muscle platform enables robust high-content assays of calcium dynamics and contractile readouts with increased sensitivity and reproducibility compared to traditional myotube cultures, making it particularly suitable for screening therapeutic candidates for different muscle pathologies.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d3lc00442b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-04DOI: 10.1039/D4LC00380B
Yu Cheng, Callum D. Hay, Suchaya M. Mahuttanatan, James W. Hindley, Oscar Ces and Yuval Elani
{"title":"Microfluidic technologies for lipid vesicle generation","authors":"Yu Cheng, Callum D. Hay, Suchaya M. Mahuttanatan, James W. Hindley, Oscar Ces and Yuval Elani","doi":"10.1039/D4LC00380B","DOIUrl":"10.1039/D4LC00380B","url":null,"abstract":"<p >Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (<em>i.e.</em>, lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, <em>etc.</em>), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00380b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2024-09-04DOI: 10.1039/D4LC00512K
Emily Pyne, Mark Reardon, Martin Christensen, Pablo Rodriguez Mateos, Scott Taylor, Alexander Iles, Ananya Choudhury, Nicole Pamme and Isabel M. Pires
{"title":"Investigating the impact of the interstitial fluid flow and hypoxia interface on cancer transcriptomes using a spheroid-on-chip perfusion system†","authors":"Emily Pyne, Mark Reardon, Martin Christensen, Pablo Rodriguez Mateos, Scott Taylor, Alexander Iles, Ananya Choudhury, Nicole Pamme and Isabel M. Pires","doi":"10.1039/D4LC00512K","DOIUrl":"10.1039/D4LC00512K","url":null,"abstract":"<p >Solid tumours are complex and heterogeneous systems, which exist in a dynamic biophysical microenvironment. Conventional cancer research methods have long relied on two-dimensional (2D) static cultures which neglect the dynamic, three-dimensional (3D) nature of the biophysical tumour microenvironment (TME), especially the role and impact of interstitial fluid flow (IFF). To address this, we undertook a transcriptome-wide analysis of the impact of IFF-like perfusion flow using a spheroid-on-chip microfluidic platform, which allows 3D cancer spheroids to be integrated into extracellular matrices (ECM)-like hydrogels and exposed to continuous perfusion, to mimic IFF in the TME. Importantly, we have performed these studies both in experimental (normoxia) and pathophysiological (hypoxia) oxygen conditions. Our data indicated that gene expression was altered by flow when compared to static conditions, and for the first time showed that these gene expression patterns differed in different oxygen tensions, reflecting a differential role of spheroid perfusion in IFF-like flow in tumour-relevant hypoxic conditions in the biophysical TME. We were also able to identify factors primarily linked with IFF-like conditions which are linked with prognostic value in cancer patients and therefore could correspond to a potential novel biomarker of IFF in cancer. This study therefore highlights the need to consider relevant oxygen conditions when studying the impact of flow in cancer biology, as well as demonstrating the potential of microfluidic models of flow to identify IFF-relevant tumour biomarkers.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lc/d4lc00512k?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}