Lab on a ChipPub Date : 2025-03-12DOI: 10.1039/d4lc00843j
Navajit S Baban, Christopher J Stubbs, Yong-Ak Song
{"title":"MechanoBioCAD: a generalized semi-automated computational tool for mechanobiological studies.","authors":"Navajit S Baban, Christopher J Stubbs, Yong-Ak Song","doi":"10.1039/d4lc00843j","DOIUrl":"https://doi.org/10.1039/d4lc00843j","url":null,"abstract":"<p><p>Soft micropillar arrays enable detailed studies of cellular mechanotransduction and biomechanics using traditional beam-bending models. However, they often rely on simplified assumptions, leading to significant errors in force estimation. We present MechanoBioCAD (MBC), a finite element method (FEM)-based tool designed specifically for micropillar research and error estimation. Unlike traditional methods, MBC leverages the principle of minimizing total potential energy, avoiding errors associated with beam bending assumptions. MBC automates FEM model generation, analysis, and post-processing, providing accurate force quantification based on deflection input. The tool addresses critical issues such as substrate deformation, interpillar interactions, improper load application heights, and nonlinear effects. Applied to fibroblast cell traction and <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) thrashing cases, MBC recorded 23% and 34% errors in the estimated forces, respectively, compared to traditional methods. As an open-access tool with the Abaqus Student Edition, MBC democratizes rational design, analysis, and error estimation for researchers who are not subject matter experts in FEM.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-12DOI: 10.1039/D4LC01051E
Xin Xu, Yunxiu Qiu, Chen-Yu Chen, Molly Carton, Paige M. R. Campbell, A. Muhaymin Chowdhury, Bidhan C. Bandyopadhyay, William E. Bentley, Bryan Ronain Smith and Ryan D. Sochol
{"title":"3D nanoprinting of PDMS microvessels with tailored tortuosity and microporosity via direct laser writing†","authors":"Xin Xu, Yunxiu Qiu, Chen-Yu Chen, Molly Carton, Paige M. R. Campbell, A. Muhaymin Chowdhury, Bidhan C. Bandyopadhyay, William E. Bentley, Bryan Ronain Smith and Ryan D. Sochol","doi":"10.1039/D4LC01051E","DOIUrl":"10.1039/D4LC01051E","url":null,"abstract":"<p >Microvessels (<em>e.g.</em>, capillaries) are ubiquitous throughout human anatomy, yet recreating their three-dimensional (3D) microfluidic and architectural sophistication at biologically accurate length scales has remained a critical challenge. To overcome this barrier, here we report a hybrid additive manufacturing—or “3D printing”—strategy in which “Two-Photon Direct Laser Writing (DLW)” is used to nanoprint microvessels of arbitrary design directly atop “Liquid-Crystal Display (LCD)” 3D-printed microfluidic chips. Fabrication results indicated effective production of 100 μm-diameter 3D polydimethylsiloxane (PDMS) microfluidic vessels with 5 μm-thick walls—featuring arrays of pre-designed 5 μm-diameter micropores—as well as three discrete spiralled, intertwined microvessels. Experimental results with MDA-MB-231 epithelial breast cancer cells revealed the ability for the 3D PDMS microvessels to support cell culture. In combination, these results suggest that the presented strategy for 3D nanoprinting PDMS microvessels with custom-designed architectures and microporosity offers a promising pathway to enable new classes of “organ-on-a-chip (OOC)” systems for wide-ranging biomedical applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 8","pages":" 1947-1958"},"PeriodicalIF":6.1,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921864/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-11DOI: 10.1039/d5lc00090d
Sudip Das, Mackenzie Meyer, Mark J Kushner, Ryan L Hartman
{"title":"Ignition of non-equilibrium methane dielectric barrier discharges in a multiphase plasma-liquid microfluidic device.","authors":"Sudip Das, Mackenzie Meyer, Mark J Kushner, Ryan L Hartman","doi":"10.1039/d5lc00090d","DOIUrl":"https://doi.org/10.1039/d5lc00090d","url":null,"abstract":"<p><p>Atmospheric pressure plasma conversion of methane is usually addressed in gas-only systems, such as dry reforming of methane. Introducing a liquid in such a system enables direct utilization of plasma-produced radicals, such as methyl (CH<sub>3</sub>), as a reactant in the liquid. Methylation of organic liquids by this technique can lead to the sustainable production of high-value products. A dielectric-barrier-discharge (DBD) microfluidic reactor having a 500 μm × 500 μm cross-section was developed to investigate the characteristics of methane-containing atmospheric pressure plasmas in contact with organic solvents. The sensors included optical emission spectroscopy and chip surface temperature measurement to estimate and predict plasma initiation in these methane-containing systems and provide insights into the plasma-liquid interfacial behavior. Fluids having high liquid hold-up, low boiling point, and low dielectric constant have been found to have adverse effects on non-equilibrium DBD methane plasma ignition.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-11DOI: 10.1039/D4LC01012D
Hyewon Cho, Jungjae Woo, Haneul Jeon, Hyejeong Kim and Chang-Soo Han
{"title":"Portable multi-ionic reverse electrodialysis for continuous power supply and controllable drug release†","authors":"Hyewon Cho, Jungjae Woo, Haneul Jeon, Hyejeong Kim and Chang-Soo Han","doi":"10.1039/D4LC01012D","DOIUrl":"10.1039/D4LC01012D","url":null,"abstract":"<p >Bioinspired ionic power devices have been investigated due to their high biocompatibility and potential for sustainable energy conversion through ion concentration gradients. However, recent research into portable ionic power devices has primarily focused on hydrogel-based stacking elements, such as ion-selective gels and ionic reservoirs, to enhance productivity. However, this approach results in ionic resource consumption for the operating time. In this study, we propose a portable ionic power generator that provides continuous electricity by integrating multi-ionic reverse electrodialysis (MRED) with a passive capillary micropump for electrolyte absorption. The integrated MRED system was fabricated on a portable fluidic chip with optimizations of absorbing performance, electrolyte concentration, and shortcut current regulation attaining maximum potential of 267.45 mV and current of 4.42 mA. Furthermore, consistent and continuous performance for 25 min was achieved by incorporating cotton flow resistors, which modulate the electrolyte absorbing rate at the electrolyte contact region of the pumps. The electric potential was controlled by adjusting the cotton mass inspiring controllable drug release <em>via</em> iontophoresis where high voltage enhances charged drug penetration. This study paves the way for a new form of ionic power supply for patch-type wearable health devices.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 8","pages":" 2109-2118"},"PeriodicalIF":6.1,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-11DOI: 10.1039/d4lc00968a
Jennifer D Lee, Ankit Kumar, Tanmay Mathur, Abhishek Jain
{"title":"Vascular architecture-on-chip: engineering complex blood vessels for reproducing physiological and heterogeneous hemodynamics and endothelial function.","authors":"Jennifer D Lee, Ankit Kumar, Tanmay Mathur, Abhishek Jain","doi":"10.1039/d4lc00968a","DOIUrl":"10.1039/d4lc00968a","url":null,"abstract":"<p><p>Human circulation exhibits significant diversity and heterogeneity of blood vessel shapes. The complex architecture of these vessels may be physiological or pathological resulting in unique hemodynamics and endothelial cell phenotypes that may determine the regulation and alteration of cell signaling pathways and vascular function. While human microphysiological systems of blood vessels (vessel-chips) have mimicked several aspects of vascular pathophysiology, engineering of these tools is still limited to the fabrication of homogeneous tubular structures, especially when living endothelial cell culture is also included. Here, a common unifying approach based on gravitational lumen patterning (GLP) is presented to create non-uniform, living 3D and closed vascular lumens embedded in a collagen matrix and lined with endothelial cells, resulting in reproduction of the architecture of straight vessels, stenosis, bifurcations, aneurysms and tortuous vessels. Upon blood perfusion, these systems reveal the nature of altered flow dynamics and corresponding endothelial cell morphology. These vessel-chips closely mimic the structural variations and resulting endothelial responses often observed <i>in vivo</i> and may be used to investigate vascular complications like aortic and cerebral aneurysm, arterial tortuosity syndrome, atherosclerosis, carotid artery disease, <i>etc.</i>, where architecture plays a crucial role in disease onset and progression.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-11DOI: 10.1039/D5LC00045A
Pingping Wu, Rongwei Kou, Shuai Huang, Hongyu Li, Yuanyuan Shang, Yuzhen Zhao and Junchao Liu
{"title":"On-demand photo-controlled motion enabled by solvent-driven mesogen alignment switch†","authors":"Pingping Wu, Rongwei Kou, Shuai Huang, Hongyu Li, Yuanyuan Shang, Yuzhen Zhao and Junchao Liu","doi":"10.1039/D5LC00045A","DOIUrl":"10.1039/D5LC00045A","url":null,"abstract":"<p >Azobenzene mesogen, as a typical photo-responsive material, has potential possibility in the field of soft robots based on its <em>trans</em>–<em>cis</em> isomerization. The alignment of the azobenzene mesogen in a polymer network has a decisive impact on the photo-actuation behavior of the membrane. However, the alignment of mesogens is difficult to change after being determined, which limits the diversity of actuation modes. To solve this problem, this paper proposes a facile solvent treatment approach to reversibly change the alignment of mesogens in the polymer network. The as-prepared membrane demonstrates reversible photo-actuation behavior under UV-vis irradiation based on the strong penetration of the solvent into the polymer network, leading to disruption of the original ordered alignment of the mesogen. Promising application of a photo-driven membrane floating and sinking in the liquid phase is demonstrated. The results of this study are of great significance for the design and fabrication of a novel-type azobenzene actuator in the liquid phase.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 8","pages":" 1900-1906"},"PeriodicalIF":6.1,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-10DOI: 10.1039/D4LC00759J
Michael Knapp, Samir Kadić, Astrid Lux, Nils Paust, Roland Zengerle and Jochen Hoffmann
{"title":"Highly efficient isolation and multistep analysis of tumor cells from whole blood†","authors":"Michael Knapp, Samir Kadić, Astrid Lux, Nils Paust, Roland Zengerle and Jochen Hoffmann","doi":"10.1039/D4LC00759J","DOIUrl":"10.1039/D4LC00759J","url":null,"abstract":"<p >We present a microfluidic solution for improved tumor cell analysis based on selection-free isolation of nucleated cells from whole blood. It consists of a high-density silicon microcavity array combined with the novel fluidic strategy of microfluidic decanting. This enables multistep on-chip staining protocols comprising sample loading–blocking–extracellular staining–fixation–permeabilization and intracellular staining to quantify tumor cells. The performance of the workflow was investigated and proven by spiking colon cancer cell lines into whole blood for the detection of the epithelial tumor markers EpCAM and cytokeratin. Total cell recovery rates of ≥95% were achieved for different sample species. The method allows for rapid reagent exchange within 10 s each almost without cell loss compared to approximately 50% cell loss in reference centrifugal processing. The isolation of nucleated cells resulted in a high intra-assay precision with a CV of 2% and a single cell per well distribution of 90%, which is consistent with the theoretical estimate using Poisson statistics. The linearity of the method was demonstrated over three orders of magnitude with <em>r</em><small><sup>2</sup></small> = 0.9998. These results demonstrate a highly efficient approach for the quantification of tumor cells from whole blood that could be integrated into automated point-of-care devices in the future.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 8","pages":" 1938-1946"},"PeriodicalIF":6.1,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143612707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-10DOI: 10.1039/D4LC00840E
Nathaniel G. Hermann, Richard A. Ficek, Dmitry A. Markov, Lisa J. McCawley and M. Shane Hutson
{"title":"Toxicokinetics for organ-on-chip devices†","authors":"Nathaniel G. Hermann, Richard A. Ficek, Dmitry A. Markov, Lisa J. McCawley and M. Shane Hutson","doi":"10.1039/D4LC00840E","DOIUrl":"10.1039/D4LC00840E","url":null,"abstract":"<p >Organ-on-chip (OOC) devices are an emerging New Approach Method in both pharmacology and toxicology. Such devices use heterotypic combinations of human cells in a micro-fabricated device to mimic <em>in vivo</em> conditions and better predict organ-specific toxicological responses in humans. One drawback of these devices is that they are often made from polydimethylsiloxane (PDMS), a polymer known to interact with hydrophobic chemicals. Due to this interaction, the actual dose experienced by cells inside OOC devices can differ strongly from the nominal dose. To account for these effects, we have developed a comprehensive model to characterize chemical–PDMS interactions, including partitioning into and diffusion through PDMS. We use these methods to characterize PDMS interactions for 24 chemicals, ranging from fluorescent dyes to persistent organic pollutants to organophosphate pesticides. We further show that these methods return physical interaction parameters that can be used to accurately predict time-dependent doses under continuous-flow conditions, as would be present in an OOC device. These results demonstrate the validity of the methods and model across geometries and flow rates.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 8","pages":" 2017-2029"},"PeriodicalIF":6.1,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lc/d4lc00840e?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-cost and automated magnetic bead-based DNA data writing via digital microfluidics†","authors":"Mengdi Bao, Brett Herdendorf, Gemma Mendonsa, Sriram Chari and Anil Reddy","doi":"10.1039/D5LC00106D","DOIUrl":"10.1039/D5LC00106D","url":null,"abstract":"<p >The rapid growth in data generation presents a significant challenge for conventional storage technologies. DNA storage has emerged as a promising solution, offering substantially greater storage density and durability. However, the current DNA data writing process is costly and labor-intensive, hindering the commercialization of DNA data storage. In this study, we present a digital microfluidics (DMF) platform integrated with E47 DNAzyme ligation chemistry to develop a programmable, cost-effective, and automated DNA data writing process. Our method utilizes pre-synthesized single-stranded DNA as building blocks, which can be assembled into diverse DNA sequences that encode desired data. By employing DNAzymes as biocatalysts, we enable an enzyme-free ligation process at room temperature, significantly reducing costs compared to traditional enzyme-based methods. Our proof-of-concept demonstrates an automated DNA writing process with the reduced reagent input, providing an alternative solution to the high costs associated with current DNA data storage methods. The high specificity of ligation using DNAzymes obviates the need for storing each unique DNA block in its own reservoir, which greatly reduces the total number of reservoirs required to store the starting material. This simplifies the overall layout, and the associated plumbing of the DMF platform. To adapt the conventional column-purification required ligation on the DMF platform, we introduce a DNAzyme-cleavage-assisted bead purification assay. This method employs 17E DNAzymes to cleave and release biotinylated DNA from streptavidin beads, followed by a one-pot ligation with E47 DNAzymes to assemble the desired DNA strands. Our study represents a significant advancement in DNA data storage technology, offering a cost-effective and automated solution that enhances scalability and practicality for commercial DNA data storage applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 8","pages":" 2030-2042"},"PeriodicalIF":6.1,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lab on a ChipPub Date : 2025-03-07DOI: 10.1039/D4LC00821A
Jiling Shi, Aihua Jing, Qinan Yin, Xuewei Zheng, Zhigang Hu, Xibin Jiao, Yaomin Fan, Xiangyang Zu, Jinghua Li, Yanping Liu, Jiayu Zhai, Xiucheng Li and Kena Song
{"title":"Mechanical forces and enzymatic digestion act together to induce the remodeling of collagen fibrils in tumor microenvironment†","authors":"Jiling Shi, Aihua Jing, Qinan Yin, Xuewei Zheng, Zhigang Hu, Xibin Jiao, Yaomin Fan, Xiangyang Zu, Jinghua Li, Yanping Liu, Jiayu Zhai, Xiucheng Li and Kena Song","doi":"10.1039/D4LC00821A","DOIUrl":"10.1039/D4LC00821A","url":null,"abstract":"<p >Cancer is a serious disease in human beings, and its high lethality is mainly due to the invasion and metastasis of cancer cells. Clinically, the accumulation and high orientation of collagen fibrils were observed in cancerous tissue, which occurred not only at the location of invasion but also at 10–20 cm from the tumor. Studies indicated that the invasion of cancer cells could be guided by the oriented collagen fibrils, even in a dense matrix characterized by difficulty degradation. So, the orientation of collagen fibrils is closely related to invasion by cancer cells. However, the formation of the orientation of collagen fibrils remains insufficiently studied. A microfluidic chip-based collagen fibril tissue model was established to demonstrate its underlying mechanism. In this article, the dynamic mechanism of collagen fibril reconstruction from free orientation to high orientation was investigated at the mesoscopic dynamic level. In the experiment, the mechanical forces from interstitial flow and cell deformation were confirmed as significant factors for collagen fibril remodeling. Additionally, enzymes were confirmed as an another inducer to reconstruct the morphology of collagen fibrils, the mechanism of which was chemical degradation and recombination. Interstitial flow combined with an enzyme is an excellent combination for remodeling the distal collagen fibrils of a tumor, and this phenomenon was caught in a microfluidic platform with a micro-dose. This study to some extent answers the question of the kinetic mechanism of collagen fibril remodeling, and is expected to provide support for further proposed strategies to inhibit the orientation reconstruction of collagen fibrils and cancer treatment and prognosis.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" 8","pages":" 2053-2060"},"PeriodicalIF":6.1,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}