arXiv: Materials Science最新文献

筛选
英文 中文
Origin of anomalous temperature dependence of the Nernst effect in narrow-gap semiconductors 窄隙半导体中能量效应异常温度依赖性的起源
arXiv: Materials Science Pub Date : 2020-10-21 DOI: 10.1103/PHYSREVB.103.L041202
R. Masuki, T. Nomoto, R. Arita
{"title":"Origin of anomalous temperature dependence of the Nernst effect in narrow-gap semiconductors","authors":"R. Masuki, T. Nomoto, R. Arita","doi":"10.1103/PHYSREVB.103.L041202","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.L041202","url":null,"abstract":"Based on the Boltzmann transport theory, we study the origin of the anomalous temperature dependence of the Nernst coefficient ($nu$) due to the phonon-drag mechanism. For narrow-gap semiconductors, we find that there are two characteristic temperatures at which a noticeable peak structure appears in $nu$. Contrarily, the Seebeck coefficient ($S$) always has only one peak. While the breakdown of the Sondheimer cancellation due to the momentum-dependence of the electron relaxation time is essential for the peak in $nu$ at low $T$, the contribution of the valence band to the phonon-drag current is essential for the peak at higher $T$. By considering this mechanism, we successfully reproduce $nu$ and $S$ of FeSb$_2$ for which a gigantic phonon-drag effect is observed experimentally.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79592173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Valley pseudospin in monolayer MoSi2N4 and MoSi2As4 单层MoSi2N4和MoSi2As4的谷赝自旋
arXiv: Materials Science Pub Date : 2020-10-21 DOI: 10.1103/PHYSREVB.103.035308
Chen Yang, Z. Song, Xiaotian Sun, Jing Lu
{"title":"Valley pseudospin in monolayer \u0000MoSi2N4\u0000 and \u0000MoSi2As4","authors":"Chen Yang, Z. Song, Xiaotian Sun, Jing Lu","doi":"10.1103/PHYSREVB.103.035308","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.035308","url":null,"abstract":"For a long time, two-dimensional (2D) hexagonal MoS2 was proposed as a promising material for valleytronic system. However, the limited size of growth and low carrier motilities in MoS2 restrict its further application. Very recently, a new kind of hexagonal 2D MXene, MoSi2N4, was successfully synthesized with large size, excellent ambient stability, and considerable hole mobility. In this paper, based on the first-principles calculations, we predict that the valley-contrast properties can be realized in monolayer MoSi2N4 and its derivative MoSi2As4. Beyond the traditional two-level valleys, the valleys in monolayer MoSi2As4 are multiple-folded, implying a new valley dimension. Such multiple-folded valleys can be described by a three-band low-power Hamiltonian. This study presents the theoretical advance and the potential applications of monolayer MoSi2N4 and MoSi2As4 in valleytronic devices, especially multiple information processing.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83571285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
Liquid Flow through Defective Layered Membranes: A Phenomenological Description 液体流过有缺陷的层状膜:一种现象学描述
arXiv: Materials Science Pub Date : 2020-10-21 DOI: 10.1103/PhysRevApplied.14.044038
A. Quandt, A. Kyrylchuk, G. Seifert, David Tom'anek
{"title":"Liquid Flow through Defective Layered Membranes: A Phenomenological Description","authors":"A. Quandt, A. Kyrylchuk, G. Seifert, David Tom'anek","doi":"10.1103/PhysRevApplied.14.044038","DOIUrl":"https://doi.org/10.1103/PhysRevApplied.14.044038","url":null,"abstract":"We present a realistic phenomenological description of liquid transport through defective, layered membranes. We derive general expressions based on conventional models of laminar flow and extend the formalism to accommodate slip flow. We consider different types of defects including in-layer vacancies that provide an activation-free tortuous path through the membrane. Of the many factors that affect flow, the most important is the radius of in-layer vacancy defects, which enters in the fourth power in expressions for the flux density. We apply our formalism to water transport through defective multilayer graphene oxide membranes and find that the flow remains in the laminar regime. Our results show that observed high water permeability in this system can be explained quantitatively by a sufficient density of in-layer pores that shorten the effective diffusion path.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91190538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Pressure-induced large increase of Curie temperature of the van der Waals ferromagnet VI3 范德华铁磁体VI3的居里温度因压力而大幅升高
arXiv: Materials Science Pub Date : 2020-10-20 DOI: 10.1103/PHYSREVB.103.054424
J. Valenta, M. Kratochvílová, M. Míšek, Karel Carva, J. Kaštil, P. Doležal, P. Opletal, Petr Čermák, P. Proschek, K. Uhlířová, J. Prchal, M. Coak, S. Son, J-G. Park, V. Sechovský
{"title":"Pressure-induced large increase of Curie temperature of the van der Waals ferromagnet \u0000VI3","authors":"J. Valenta, M. Kratochvílová, M. Míšek, Karel Carva, J. Kaštil, P. Doležal, P. Opletal, Petr Čermák, P. Proschek, K. Uhlířová, J. Prchal, M. Coak, S. Son, J-G. Park, V. Sechovský","doi":"10.1103/PHYSREVB.103.054424","DOIUrl":"https://doi.org/10.1103/PHYSREVB.103.054424","url":null,"abstract":"Evolution of magnetism in single crystals of the van der Waals compound VI3 in external pressure up to 7.3 GPa studied by measuring magnetization and ac magnetic susceptibility is reported. Four magnetic phase transitions, at T1 = 54.5 K, T2 = 53 K, TC = 49.5 K, and TFM = 26 K, respectively have been observed at ambient pressure. The first two have been attributed to the onset of ferromagnetism in specific crystal-surface layers. The bulk ferromagnetism is characterized by the magnetic ordering transition at Curie temperature TC and the transition between two different ferromagnetic phases TFM, accompanied by a structure transition from monoclinic to triclinic symmetry upon cooling. The pressure effects on magnetic parameters were studied with three independent techniques. TC was found to be almost unaffected by pressures up to 0.6 GPa whereas TFM increases rapidly with increasing pressure and reaches TC at a triple point at ~ 0.85 GPa. At higher pressures, only one magnetic phase transition is observed moving to higher temperatures with increasing pressure to reach 99 K at 7.3 GPa. In contrast, the low-temperature bulk magnetization is dramatically reduced by applying pressure (by more than 50% at 2.5 GPa) suggesting a possible pressure-induced reduction of vanadium magnetic moment. We discussed these results in light of recent theoretical studies to analyze exchange interactions and provide how to increase the Curie temperature of VI3.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75835187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
Light-Induced Static Magnetization: Nonlinear Edelstein Effect 光致静态磁化:非线性爱德斯坦效应
arXiv: Materials Science Pub Date : 2020-10-18 DOI: 10.1103/PhysRevB.103.205417
Haowei Xu, Jian Zhou, Hua Wang, Ju Li
{"title":"Light-Induced Static Magnetization: Nonlinear Edelstein Effect","authors":"Haowei Xu, Jian Zhou, Hua Wang, Ju Li","doi":"10.1103/PhysRevB.103.205417","DOIUrl":"https://doi.org/10.1103/PhysRevB.103.205417","url":null,"abstract":"We theoretically and computationally demonstrate that static magnetization can be generated under light illumination via nonlinear Edelstein effect (NLEE). NLEE is applicable to semiconductors under both linearly and circularly polarized light, and there are no constraints from either spatial inversion or time-reversal symmetry. Remarkably, magnetization can be induced under linearly polarized light in nonmagnetic materials. With ab initio calculations, we reveal several prominent features of NLEE. We find that the orbital contributions can be significantly greater than the spin contributions. And magnetization with various orderings, including anti-ferromagnetic, ferromagnetic, etc., are all realizable with NLEE, which may facilitate many applications, such as unveiling hidden physical effects, creating a spatially varying magnetization, or manipulating the magnetization of anti-ferromagnetic materials. The relationship between NLEE and other magneto-optic effects, including the inverse Faraday effect and inverse Cotton-Mouton effect, is also discussed.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73270027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Phase diagram and superlattice structures of monolayer phosphorus carbide (PxC1−x) 单层碳化磷(PxC1−x)的相图和超晶格结构
arXiv: Materials Science Pub Date : 2020-10-17 DOI: 10.1103/PHYSREVMATERIALS.5.024005
Xiaoyang Ma, Jun Zhou, Tong Yang, Dechun Li, Y. Feng
{"title":"Phase diagram and superlattice structures of monolayer phosphorus carbide (\u0000PxC1−x\u0000)","authors":"Xiaoyang Ma, Jun Zhou, Tong Yang, Dechun Li, Y. Feng","doi":"10.1103/PHYSREVMATERIALS.5.024005","DOIUrl":"https://doi.org/10.1103/PHYSREVMATERIALS.5.024005","url":null,"abstract":"Phase stability and properties of two-dimensional phosphorus carbide, PxC1-x, are investigated using the first-principles method in combination with cluster expansion and Monte Carlo simulation. Monolayer PxC1-x is found to be a phase separating system which indicates difficulty in fabricating monolayer PxC1-x or crystalline PxC1-x thin films. Nevertheless, a bottom-up design approach is used to determine the stable structures of PxC1-x of various compositions which turn out to be superlattices consisting of alternating carbon and phosphorus nanoribbons along the armchair direction. Results of first-principles calculations indicate that once these structures are produced, they are mechanically and thermodynamically stable. All the ordered structures are predicted to be semiconductors, with band gap ranging from 0.2 to 1.2 eV. In addition, the monolayer PxC1-x are predicted to have high carrier mobility, and high optical absorption in the ultraviolet region which shows a red-shift as the P:C ratio increases. These properties make 2D PxC1-x promising materials for applications in electronics and optoelectronics.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73490231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds 奇宇称磁多极体系中的非线性电输运:在锰基化合物中的应用
arXiv: Materials Science Pub Date : 2020-10-15 DOI: 10.1103/PhysRevResearch.2.043081
Hikaru Watanabe, Y. Yanase
{"title":"Nonlinear electric transport in odd-parity magnetic multipole systems: Application to Mn-based compounds","authors":"Hikaru Watanabe, Y. Yanase","doi":"10.1103/PhysRevResearch.2.043081","DOIUrl":"https://doi.org/10.1103/PhysRevResearch.2.043081","url":null,"abstract":"Violation of parity symmetry gives rise to various physical phenomena such as nonlinear transport and cross-correlated responses. In particular, the nonlinear conductivity has been attracting a lot of attentions in spin-orbit coupled semiconductors, superconductors, topological materials, and so on. In this paper we present theoretical study of the nonlinear conductivity in odd-parity magnetic multipole ordered systems whose $mathcal{PT}$-symmetry is essentially distinct from the previously studied acentric systems. Combining microscopic formulation and symmetry analysis, we classify the nonlinear responses in the $mathcal{PT}$-symmetric systems as well as $mathcal{T}$-symmetric (non-magnetic) systems, and uncover nonlinear conductivity unique to the odd-parity magnetic multipole systems. A giant nonlinear Hall effect, nematicity-assisted dichroism and magnetically-induced Berry curvature dipole effect are proposed and demonstrated in a model for Mn-based magnets.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83667915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Efficient estimation of material property curves and surfaces via active learning 通过主动学习有效估计材料特性曲线和曲面
arXiv: Materials Science Pub Date : 2020-10-14 DOI: 10.1103/PHYSREVMATERIALS.5.013802
Yuan Tian, D. Xue, Ruihao Yuan, Yumei Zhou, Xiangdong Ding, Jun Sun, T. Lookman
{"title":"Efficient estimation of material property curves and surfaces via active learning","authors":"Yuan Tian, D. Xue, Ruihao Yuan, Yumei Zhou, Xiangdong Ding, Jun Sun, T. Lookman","doi":"10.1103/PHYSREVMATERIALS.5.013802","DOIUrl":"https://doi.org/10.1103/PHYSREVMATERIALS.5.013802","url":null,"abstract":"The relationship between material properties and independent variables such as temperature, external field or time, is usually represented by a curve or surface in a multi-dimensional space. Determining such a curve or surface requires a series of experiments or calculations which are often time and cost consuming. A general strategy uses an appropriate utility function to sample the space to recommend the next optimal experiment or calculation within an active learning loop. However, knowing what the optimal sampling strategy to use to minimize the number of experiments is an outstanding problem. We compare a number of strategies based on directed exploration on several materials problems of varying complexity using a Kriging based model. These include one dimensional curves such as the fatigue life curve for 304L stainless steel and the Liquidus line of the Fe-C phase diagram, surfaces such as the Hartmann 3 function in 3D space and the fitted intermolecular potential for Ar-SH, and a four dimensional data set of experimental measurements for BaTiO3 based ceramics. We also consider the effects of experimental noise on the Hartmann 3 function. We find that directed exploration guided by maximum variance provides better performance overall, converging faster across several data sets. However, for certain problems, the trade-off methods incorporating exploitation can perform at least as well, if not better than maximum variance. Thus, we discuss how the choice of the utility function depends on the distribution of the data, the model performance and uncertainties, additive noise as well as the budget.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85124128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Transport properties of band engineered p−n heterostructures of epitaxial Bi2Se3/(Bi1−xSbx)2(Te1−ySey)3 topological insulators 外延Bi2Se3/(Bi1−xSbx)2(Te1−ySey)3拓扑绝缘体带工程p−n异质结构的输运性质
arXiv: Materials Science Pub Date : 2020-10-13 DOI: 10.1103/PHYSREVMATERIALS.5.014202
T. Mayer, H. Werner, F. Schmid, R. Díaz-Pardo, J. Fujii, I. Vobornik, C. Back, M. Kronseder, D. Bougeard
{"title":"Transport properties of band engineered \u0000p−n\u0000 heterostructures of epitaxial \u0000Bi2Se3/(Bi1−xSbx)2(Te1−ySey)3\u0000 topological insulators","authors":"T. Mayer, H. Werner, F. Schmid, R. Díaz-Pardo, J. Fujii, I. Vobornik, C. Back, M. Kronseder, D. Bougeard","doi":"10.1103/PHYSREVMATERIALS.5.014202","DOIUrl":"https://doi.org/10.1103/PHYSREVMATERIALS.5.014202","url":null,"abstract":"The challenge of parasitic bulk doping in Bi-based 3D topological insulator materials is still omnipresent, especially when preparing samples by molecular beam epitaxy (MBE). Here, we present a heterostructure approach for epitaxial BSTS growth. A thin n-type Bi$_2$Se$_3$ (BS) layer is used as an epitaxial and electrostatic seed which drastically improves the crystalline and electronic quality and reproducibility of the sample properties. In heterostructures of BS with p-type (Bi$_{1-x}$Sb$_x$)$_2$(Te$_{1-y}$Se$_y$)$_3$ (BSTS) we demonstrate intrinsic band bending effects to tune the electronic properties solely by adjusting the thickness of the respective layer. The analysis of weak anti-localization features in the magnetoconductance indicates a separation of top and bottom conduction layers with increasing BSTS thickness. By temperature- and gate-dependent transport measurements, we show that the thin BS seed layer can be completely depleted within the heterostructure and demonstrate electrostatic tuning of the bands via a back-gate throughout the whole sample thickness.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79120079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Two-dimensional van der Waals electrical contact to monolayer MoSi2N4 单层MoSi2N4的二维范德华电接触
arXiv: Materials Science Pub Date : 2020-10-12 DOI: 10.1063/5.0033241
Liemao Cao, Guanghui Zhou, L. Ang, Y. Ang
{"title":"Two-dimensional van der Waals electrical contact to monolayer MoSi2N4","authors":"Liemao Cao, Guanghui Zhou, L. Ang, Y. Ang","doi":"10.1063/5.0033241","DOIUrl":"https://doi.org/10.1063/5.0033241","url":null,"abstract":"Two-dimensional (2D) MoSi$_2$N$_4$ monolayer is an emerging class of air-stable 2D semiconductor possessing exceptional electrical and mechanical properties. Despite intensive recent research efforts devoted to uncover the material properties of MoSi$_2$N$_4$, the physics of electrical contacts to MoSi$_2$N$_4$ remains largely unexplored thus far. In this work, we study the van der Waals heterostructures composed of MoSi$_2$N$_4$ contacted by graphene and NbS$_2$ monolayers using first-principle density functional theory calculations. We show that the MoSi$_2$N$_4$/NbS$_2$ contact exhibits an ultralow Schottky barrier height (SBH), which is beneficial for nanoelectronics applications. For MoSi$_2$N$_4$/graphene contact, the SBH can be modulated via interlayer distance or via external electric fields, thus opening up an opportunity for reconfigurable and tunable nanoelectronic devices. Our findings provide insights on the physics of 2D electrical contact to MoSi$_2$N$_4$, and shall offer a critical first step towards the design of high-performance electrical contacts to MoSi$_2$N$_4$-based 2D nanodevices.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89625166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 118
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信