{"title":"Valley pseudospin in monolayer \nMoSi2N4\n and \nMoSi2As4","authors":"Chen Yang, Z. Song, Xiaotian Sun, Jing Lu","doi":"10.1103/PHYSREVB.103.035308","DOIUrl":null,"url":null,"abstract":"For a long time, two-dimensional (2D) hexagonal MoS2 was proposed as a promising material for valleytronic system. However, the limited size of growth and low carrier motilities in MoS2 restrict its further application. Very recently, a new kind of hexagonal 2D MXene, MoSi2N4, was successfully synthesized with large size, excellent ambient stability, and considerable hole mobility. In this paper, based on the first-principles calculations, we predict that the valley-contrast properties can be realized in monolayer MoSi2N4 and its derivative MoSi2As4. Beyond the traditional two-level valleys, the valleys in monolayer MoSi2As4 are multiple-folded, implying a new valley dimension. Such multiple-folded valleys can be described by a three-band low-power Hamiltonian. This study presents the theoretical advance and the potential applications of monolayer MoSi2N4 and MoSi2As4 in valleytronic devices, especially multiple information processing.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.035308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
For a long time, two-dimensional (2D) hexagonal MoS2 was proposed as a promising material for valleytronic system. However, the limited size of growth and low carrier motilities in MoS2 restrict its further application. Very recently, a new kind of hexagonal 2D MXene, MoSi2N4, was successfully synthesized with large size, excellent ambient stability, and considerable hole mobility. In this paper, based on the first-principles calculations, we predict that the valley-contrast properties can be realized in monolayer MoSi2N4 and its derivative MoSi2As4. Beyond the traditional two-level valleys, the valleys in monolayer MoSi2As4 are multiple-folded, implying a new valley dimension. Such multiple-folded valleys can be described by a three-band low-power Hamiltonian. This study presents the theoretical advance and the potential applications of monolayer MoSi2N4 and MoSi2As4 in valleytronic devices, especially multiple information processing.