S. Turyshev, H. Helvajian, L. Friedman, T. Heinsheimer, D. Garber, Artur R. Davoyan, V. Toth
{"title":"Exploring the Outer Solar System with Solar Sailing Smallsats on Fast-Transit Trajectories, In-Flight Autonomous Assembly of Advanced Science Payloads","authors":"S. Turyshev, H. Helvajian, L. Friedman, T. Heinsheimer, D. Garber, Artur R. Davoyan, V. Toth","doi":"10.3847/25C2CFEB.B70177FE","DOIUrl":"https://doi.org/10.3847/25C2CFEB.B70177FE","url":null,"abstract":"We discuss the in-flight autonomous assembly as the means to build advanced planetary science payloads to explore the outer regions of the solar system. These payloads are robotically constructed from modular parts delivered by a group of smallsats (< 20 kg) which are placed on fast solar system transfer trajectories while being accelerated by solar sail propulsion to velocities of ~10 AU/yr. This concept provides the planetary science community with inexpensive, frequent access to distant regions of the solar system with flexible, reconfigurable instruments and systems that are assembled in flight. It permits faster revisit times, rapid replenishment and technology insertions, longer mission capability with lower costs. It also increases the science capabilities of smallsats via the use of modular, redundant architectures and allows for proliferation of sensing instrumentation throughout the solar system.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"17 8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82815500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Tamppari, A. Brecht, K. Baines, B. Drouin, L. Esposito, S. Guzewich, R. Hofer, K. Jessup, A. Kleinbohl, T. Kremic, M. Mischna, N. Schneider, A. Spiga
{"title":"Terrestrial Planets Comparative Climatology (TPCC) mission concept","authors":"L. Tamppari, A. Brecht, K. Baines, B. Drouin, L. Esposito, S. Guzewich, R. Hofer, K. Jessup, A. Kleinbohl, T. Kremic, M. Mischna, N. Schneider, A. Spiga","doi":"10.3847/25C2CFEB.28504DAD","DOIUrl":"https://doi.org/10.3847/25C2CFEB.28504DAD","url":null,"abstract":"The authors and co-signers of the Terrestrial Planets Comparative Climatology (TPCC) mission concept white paper advocate that planetary science in the next decade would greatly benefit from comparatively studying the fundamental behavior of the atmospheres of Venus and Mars, contemporaneously and with the same instrumentation, to capture atmospheric response to the same solar forcing, and with a minimum of instrument-related variability. Thus, this white paper was created for the 2023-2032 Planetary Science Decadal Survey process. It describes the science rationale for such a mission, and a mission concept that could achieve such a mission.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84037074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast and Automated Peak Bagging with DIAMONDS (FAMED)","authors":"E. Corsaro, J. McKeever, J. Kuszlewicz","doi":"10.1051/0004-6361/202037930","DOIUrl":"https://doi.org/10.1051/0004-6361/202037930","url":null,"abstract":"Stars of low and intermediate mass that exhibit oscillations may show tens of detectable oscillation modes each. Oscillation modes are a powerful to constrain the internal structure and rotational dynamics of the star, hence tool allowing one to obtain an accurate stellar age. The tens of thousands of solar-like oscillators that have been discovered thus far are representative of the large diversity of fundamental stellar properties and evolutionary stages available. Because of the wide range of oscillation features that can be recognized in such stars, it is particularly challenging to properly characterize the oscillation modes in detail, especially in light of large stellar samples. Overcoming this issue requires an automated approach, which has to be fast, reliable, and flexible at the same time. In addition, this approach should not only be capable of extracting the oscillation mode properties of frequency, linewidth, and amplitude from stars in different evolutionary stages, but also able to assign a correct mode identification for each of the modes extracted. Here we present the new freely available pipeline FAMED (Fast and AutoMated pEak bagging with DIAMONDS), which is capable of performing an automated and detailed asteroseismic analysis in stars ranging from the main sequence up to the core-Helium-burning phase of stellar evolution. This, therefore, includes subgiant stars, stars evolving along the red giant branch (RGB), and stars likely evolving toward the early asymptotic giant branch. In this paper, we additionally show how FAMED can detect rotation from dipolar oscillation modes in main sequence, subgiant, low-luminosity RGB, and core-Helium-burning stars. FAMED can be downloaded from its public GitHub repository (this https URL).","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"80 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80953798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. D'Addona, G. Riccio, S. Cavuoti, Crescenzo Tortora, M. Brescia
{"title":"Anomaly Detection in Astrophysics: A Comparison Between Unsupervised Deep and Machine Learning on KiDS Data","authors":"M. D'Addona, G. Riccio, S. Cavuoti, Crescenzo Tortora, M. Brescia","doi":"10.1007/978-3-030-65867-0_10","DOIUrl":"https://doi.org/10.1007/978-3-030-65867-0_10","url":null,"abstract":"","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85451185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanya Das, Ravinder K.Banyal, T. Sivarani, B. Ravindra
{"title":"Development of a stabilized Fabry–Perot etalonbased calibrator for Hanle echelle spectrograph","authors":"Tanya Das, Ravinder K.Banyal, T. Sivarani, B. Ravindra","doi":"10.1364/ao.384713","DOIUrl":"https://doi.org/10.1364/ao.384713","url":null,"abstract":"Accurate wavelength calibration is an important factor for any measurement with high resolution spectrographs. Stellar spectrum comprises of discrete absorption or emission lines whose position is precisely determined by calibrating the spectrograph using known reference lines generated from laboratory sources. For the spectrograph to measure small variations in Doppler shift, the wavelength calibration must be sufficiently stable during observation time. Instrument instability, mainly due to environmental factors like temperature and pressure variations, limitations of traditional calibration methods, for example Th-Ar lamps, are the main challenges which high precision spectroscopy. Through proper environmental control, by maintaining pressure at few mbar and temperature fluctuations within $pm$0.05$^{circ}$C, Fabry Perot etalon (FP) can yield a velocity precision of 1-10 m/s, when used for wavelength calibration. We have developed a passively stabilized FP based wavelength calibrator for Hanle Echelle Spectrograph (HESP) installed on Himalayan Chandra Telescope (HCT) at Indian Astronomical Observatory (IAO), Hanle, India. The etalon has been characterized using Fourier Transform Spectrograph (FTS) and initial test runs have been performed with HESP. In this paper we present the design and construction of the instrument along with preliminary test results obtained from HESP.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"204 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75426856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"JoXSZ: Joint X-SZ fitting code for galaxy clusters","authors":"F. Castagna, S. Andreon","doi":"10.1051/0004-6361/202037543","DOIUrl":"https://doi.org/10.1051/0004-6361/202037543","url":null,"abstract":"The thermal Sunyaev-Zeldovich (SZ) effect and the X-ray emission offer separate and highly complementary probes of the thermodynamics of the intracluster medium. We present JoXSZ, the first publicly available code designed to jointly fit SZ and X-ray data coming from various instruments to derive the thermodynamic profiles of galaxy clusters. JoXSZ follows a fully Bayesian forward-modelling approach, accounts for the SZ calibration uncertainty and X-ray background level systematic. It improves upon most state-of-the-art, and not publicly available, analyses because it adopts the correct Poisson-Gauss expression for the joint likelihood, makes full use of the information contained in the observations, even in the case of missing values within the datasets, has a more inclusive error budget, and adopts a consistent temperature across the various parts of the code, allowing for differences between X-ray and SZ gas mass weighted temperatures when required by the user. JoXSZ accounts for beam smearing and data analysis transfer function, accounts for the temperature and metallicity dependencies of the SZ and X-ray conversion factors, adopts flexible parametrization for the thermodynamic profiles, and on user request allows either adopting or relaxing the assumption of hydrostatic equilibrium (HE). When HE holds, JoXSZ uses a physical (positive) prior on the radial derivative of the enclosed mass and derives the mass profile and overdensity radii $r_Delta$. For these reasons, JoXSZ goes beyond simple SZ and electron density fits. We illustrate the use of JoXSZ by combining Chandra and NIKA data on the high-redshift cluster CL J1226.9+3332. The code is written in Python, it is fully documented and the users are free to customize their analysis in accordance with their needs and requirements. JoXSZ is publicly available on GitHub.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74282062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Denman, A. Renard, K. Vanderlinde, P. Berger, K. Masui, I. Tretyakov
{"title":"A GPU Spatial Processing System for CHIME","authors":"N. Denman, A. Renard, K. Vanderlinde, P. Berger, K. Masui, I. Tretyakov","doi":"10.1142/S2251171720500142","DOIUrl":"https://doi.org/10.1142/S2251171720500142","url":null,"abstract":"We present an overview of the Graphics Processing Unit (GPU) based spatial processing system created for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). The design employs AMD S9300x2 GPUs and readily-available commercial hardware in its processing nodes to provide a cost- and power-efficient processing substrate. These nodes are supported by a liquid-cooling system which allows continuous operation with modest power consumption and in all but the most adverse conditions. Capable of continuously correlating 2048 receiver-polarizations across 400,MHz of bandwidth, the CHIME X-engine constitutes the most powerful radio correlator currently in existence. It receives $6.6$,Tb/s of channelized data from CHIME's FPGA-based F-engine, and the primary correlation task requires $8.39times10^{14}$ complex multiply-and-accumulate operations per second. The same system also provides formed-beam data products to commensal FRB and Pulsar experiments; it constitutes a general spatial-processing system of unprecedented scale and capability, with correspondingly great challenges in computation, data transport, heat dissipation, and interference shielding.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84723308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Devon Powell, S. Vegetti, J. McKean, C. Spingola, F. Rizzo, H. Stacey
{"title":"A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution","authors":"Devon Powell, S. Vegetti, J. McKean, C. Spingola, F. Rizzo, H. Stacey","doi":"10.1093/mnras/staa2740","DOIUrl":"https://doi.org/10.1093/mnras/staa2740","url":null,"abstract":"We present a new gravitational lens modelling technique designed to model high-resolution interferometric observations with large numbers of visibilities without the need to pre-average the data in time or frequency. We demonstrate the accuracy of the method using validation tests on mock observations. Using small data sets with $sim 10^3$ visibilities, we first compare our approach with the more traditional direct Fourier transform (DFT) implementation and direct linear solver. Our tests indicate that our source inversion is indistinguishable from that of the DFT. Our method also infers lens parameters to within 1 to 2 per cent of both the ground truth and DFT, given sufficiently high signal-to-noise ratio (SNR). When the SNR is as low as 5, both approaches lead to errors of several tens of per cent in the lens parameters and a severely disrupted source structure, indicating that this is an issue related to the data quality rather than the modelling technique of choice. We then analyze a large data set with $sim 10^8$ visibilities and a SNR matching real global Very Long Baseline Interferometry observations of the gravitational lens system MG J0751+2716. The size of the data is such that it cannot be modelled with traditional implementations. Using our novel technique, we find that we can infer the lens parameters and the source brightness distribution, respectively, with an RMS error of 0.25 and 0.97 per cent relative to the ground truth.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82557349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A method for unmasking incomplete astronomical signals: Application to the CO Multi-line Imaging of Nearby Galaxies project","authors":"Suchetha Cooray, T. Takeuchi, M. Yoda, K. Sorai","doi":"10.1093/pasj/psaa038","DOIUrl":"https://doi.org/10.1093/pasj/psaa038","url":null,"abstract":"Photometric surveys have provided incredible amounts of astronomical information in the form of images. However, astronomical images often contain artifacts that can critically hinder scientific analysis by misrepresenting intensities or contaminating catalogs as artificial objects. These affected pixels need to be masked and dealt with in any data reduction pipeline. In this paper, we present a flexible, iterative algorithm to recover (unmask) astronomical images where some pixels are lacking. We demonstrate the application of the method on some intensity calibration source images in CO Multi-line Imaging of Nearby Galaxies (COMING) Project conducted using the 45m telescope at Nobeyama Radio Observatory (NRO). The proposed algorithm restored artifacts due to a detector error in the intensity calibration source images. The restored images were used to calibrate 11 out of 147 observed galaxy maps in the survey. The tests show that the algorithm can restore measured intensities at sub 1% error even for noisy images (SNR = 2.4), despite lacking a significant part of the image. We present the formulation of the reconstruction algorithm, discuss its possibilities and limitations for extensions to other astronomical signals and the results of the COMING application.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79813960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. D. Di Virgilio, A. Basti, N. Beverini, F. Bosi, G. Carelli, D. Ciampini, F. Fuso, U. Giacomelli, E. Maccioni, P. Marsili, A. Ortolan, A. Porzio, A. Simonelli, G. Terreni
{"title":"Underground Sagnac gyroscope with sub-prad/s rotation rate sensitivity: Toward general relativity tests on Earth","authors":"A. D. Di Virgilio, A. Basti, N. Beverini, F. Bosi, G. Carelli, D. Ciampini, F. Fuso, U. Giacomelli, E. Maccioni, P. Marsili, A. Ortolan, A. Porzio, A. Simonelli, G. Terreni","doi":"10.1103/PHYSREVRESEARCH.2.032069","DOIUrl":"https://doi.org/10.1103/PHYSREVRESEARCH.2.032069","url":null,"abstract":"Measuring in a single location on Earth its angular rotation rate with respect to the celestial frame, with a sensitivity enabling access to the tiny Lense-Thirring effect is an extremely challenging task. GINGERINO is a large frame ring laser gyroscope, operating free running and unattended inside the underground laboratory of the Gran Sasso, Italy. The main geodetic signals, i.e., Annual and Chandler wobbles, daily polar motion and Length of the Day, are recovered from GINGERINO data using standard linear regression methods, demonstrating a sensitivity better than 1 prad/s, therefore close to the requirements for an Earth-based Lense-Thirring test.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78300888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}