高角分辨率干涉引力透镜观测的可见性空间建模新方法

Devon Powell, S. Vegetti, J. McKean, C. Spingola, F. Rizzo, H. Stacey
{"title":"高角分辨率干涉引力透镜观测的可见性空间建模新方法","authors":"Devon Powell, S. Vegetti, J. McKean, C. Spingola, F. Rizzo, H. Stacey","doi":"10.1093/mnras/staa2740","DOIUrl":null,"url":null,"abstract":"We present a new gravitational lens modelling technique designed to model high-resolution interferometric observations with large numbers of visibilities without the need to pre-average the data in time or frequency. We demonstrate the accuracy of the method using validation tests on mock observations. Using small data sets with $\\sim 10^3$ visibilities, we first compare our approach with the more traditional direct Fourier transform (DFT) implementation and direct linear solver. Our tests indicate that our source inversion is indistinguishable from that of the DFT. Our method also infers lens parameters to within 1 to 2 per cent of both the ground truth and DFT, given sufficiently high signal-to-noise ratio (SNR). When the SNR is as low as 5, both approaches lead to errors of several tens of per cent in the lens parameters and a severely disrupted source structure, indicating that this is an issue related to the data quality rather than the modelling technique of choice. We then analyze a large data set with $\\sim 10^8$ visibilities and a SNR matching real global Very Long Baseline Interferometry observations of the gravitational lens system MG J0751+2716. The size of the data is such that it cannot be modelled with traditional implementations. Using our novel technique, we find that we can infer the lens parameters and the source brightness distribution, respectively, with an RMS error of 0.25 and 0.97 per cent relative to the ground truth.","PeriodicalId":8459,"journal":{"name":"arXiv: Instrumentation and Methods for Astrophysics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution\",\"authors\":\"Devon Powell, S. Vegetti, J. McKean, C. Spingola, F. Rizzo, H. Stacey\",\"doi\":\"10.1093/mnras/staa2740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new gravitational lens modelling technique designed to model high-resolution interferometric observations with large numbers of visibilities without the need to pre-average the data in time or frequency. We demonstrate the accuracy of the method using validation tests on mock observations. Using small data sets with $\\\\sim 10^3$ visibilities, we first compare our approach with the more traditional direct Fourier transform (DFT) implementation and direct linear solver. Our tests indicate that our source inversion is indistinguishable from that of the DFT. Our method also infers lens parameters to within 1 to 2 per cent of both the ground truth and DFT, given sufficiently high signal-to-noise ratio (SNR). When the SNR is as low as 5, both approaches lead to errors of several tens of per cent in the lens parameters and a severely disrupted source structure, indicating that this is an issue related to the data quality rather than the modelling technique of choice. We then analyze a large data set with $\\\\sim 10^8$ visibilities and a SNR matching real global Very Long Baseline Interferometry observations of the gravitational lens system MG J0751+2716. The size of the data is such that it cannot be modelled with traditional implementations. Using our novel technique, we find that we can infer the lens parameters and the source brightness distribution, respectively, with an RMS error of 0.25 and 0.97 per cent relative to the ground truth.\",\"PeriodicalId\":8459,\"journal\":{\"name\":\"arXiv: Instrumentation and Methods for Astrophysics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa2740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa2740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种新的引力透镜建模技术,旨在模拟具有大量能见度的高分辨率干涉观测,而无需在时间或频率上预平均数据。我们在模拟观测中使用验证测试来证明该方法的准确性。使用具有$\sim 10^3$可见性的小数据集,我们首先将我们的方法与更传统的直接傅立叶变换(DFT)实现和直接线性求解器进行比较。我们的测试表明,我们的源反演与DFT的反演是无法区分的。在足够高的信噪比(SNR)下,我们的方法还推断出透镜参数在地面真值和DFT的1%至2%以内。当信噪比低至5时,这两种方法都会导致透镜参数误差达数十个百分点,并且严重破坏源结构,这表明这是一个与数据质量有关的问题,而不是与选择的建模技术有关。然后,我们分析了一个具有$\sim 10^8$可见度的大型数据集,其信噪比与引力透镜系统MG J0751+2716的真实全球甚长基线干涉观测相匹配。数据的规模如此之大,以至于无法用传统的实现对其进行建模。使用我们的新技术,我们发现我们可以分别推断透镜参数和光源亮度分布,相对于地面真实值的RMS误差为0.25%和0.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach to visibility-space modelling of interferometric gravitational lens observations at high angular resolution
We present a new gravitational lens modelling technique designed to model high-resolution interferometric observations with large numbers of visibilities without the need to pre-average the data in time or frequency. We demonstrate the accuracy of the method using validation tests on mock observations. Using small data sets with $\sim 10^3$ visibilities, we first compare our approach with the more traditional direct Fourier transform (DFT) implementation and direct linear solver. Our tests indicate that our source inversion is indistinguishable from that of the DFT. Our method also infers lens parameters to within 1 to 2 per cent of both the ground truth and DFT, given sufficiently high signal-to-noise ratio (SNR). When the SNR is as low as 5, both approaches lead to errors of several tens of per cent in the lens parameters and a severely disrupted source structure, indicating that this is an issue related to the data quality rather than the modelling technique of choice. We then analyze a large data set with $\sim 10^8$ visibilities and a SNR matching real global Very Long Baseline Interferometry observations of the gravitational lens system MG J0751+2716. The size of the data is such that it cannot be modelled with traditional implementations. Using our novel technique, we find that we can infer the lens parameters and the source brightness distribution, respectively, with an RMS error of 0.25 and 0.97 per cent relative to the ground truth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信