Annual review of plant biology最新文献

筛选
英文 中文
Environmental Control of Hypocotyl Elongation. 下胚轴伸长的环境控制。
IF 21.3 1区 生物学
Annual review of plant biology Pub Date : 2024-07-01 Epub Date: 2024-07-02 DOI: 10.1146/annurev-arplant-062923-023852
Johanna Krahmer, Christian Fankhauser
{"title":"Environmental Control of Hypocotyl Elongation.","authors":"Johanna Krahmer, Christian Fankhauser","doi":"10.1146/annurev-arplant-062923-023852","DOIUrl":"10.1146/annurev-arplant-062923-023852","url":null,"abstract":"<p><p>The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138443673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intercellular Communication in Shoot Meristems. 嫩枝分生组织中的细胞间通信
IF 21.3 1区 生物学
Annual review of plant biology Pub Date : 2024-07-01 Epub Date: 2024-07-02 DOI: 10.1146/annurev-arplant-070523-035342
Edgar Demesa-Arevalo, Madhumitha Narasimhan, Rüdiger Simon
{"title":"Intercellular Communication in Shoot Meristems.","authors":"Edgar Demesa-Arevalo, Madhumitha Narasimhan, Rüdiger Simon","doi":"10.1146/annurev-arplant-070523-035342","DOIUrl":"10.1146/annurev-arplant-070523-035342","url":null,"abstract":"<p><p>The shoot meristem of land plants maintains the capacity for organ generation throughout its lifespan due to a group of undifferentiated stem cells. Most meristems are shaped like a dome with a precise spatial arrangement of functional domains, and, within and between these domains, cells interact through a network of interconnected signaling pathways. Intercellular communication in meristems is mediated by mobile transcription factors, small RNAs, hormones, and secreted peptides that are perceived by membrane-localized receptors. In recent years, we have gained deeper insight into the underlying molecular processes of the shoot meristem, and we discuss here how plants integrate internal and external inputs to control shoot meristem activities.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites. 利用合成生物学了解植物特化代谢物的功能。
IF 21.3 1区 生物学
Annual review of plant biology Pub Date : 2024-07-01 Epub Date: 2024-07-02 DOI: 10.1146/annurev-arplant-060223-013842
Yuechen Bai, Xinyu Liu, Ian T Baldwin
{"title":"Using Synthetic Biology to Understand the Function of Plant Specialized Metabolites.","authors":"Yuechen Bai, Xinyu Liu, Ian T Baldwin","doi":"10.1146/annurev-arplant-060223-013842","DOIUrl":"10.1146/annurev-arplant-060223-013842","url":null,"abstract":"<p><p>Plant specialized metabolites (PSMs) are variably distributed across taxa, tissues, and ecological contexts; this variability has inspired many theories about PSM function, which, to date, remain poorly tested because predictions have outpaced the available data. Advances in mass spectrometry-based metabolomics have enabled unbiased PSM profiling, and molecular biology techniques have produced PSM-free plants; the combination of these methods has accelerated our understanding of the complex ecological roles that PSMs play in plants. Synthetic biology techniques and workflows are producing high-value, structurally complex PSMs in quantities and purities sufficient for both medicinal and functional studies. These workflows enable the reengineering of PSM transport, externalization, structural diversity, and production in novel taxa, facilitating rigorous tests of long-standing theoretical predictions about why plants produce so many different PSMs in particular tissues and ecological contexts. Plants use their chemical prowess to solve ecological challenges, and synthetic biology workflows are accelerating our understanding of these evolved functions.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fighting for Survival at the Stomatal Gate. 在气孔门为生存而战
IF 21.3 1区 生物学
Annual review of plant biology Pub Date : 2024-07-01 DOI: 10.1146/annurev-arplant-070623-091552
Maeli Melotto, Brianna Fochs, Zachariah Jaramillo, Olivier Rodrigues
{"title":"Fighting for Survival at the Stomatal Gate.","authors":"Maeli Melotto, Brianna Fochs, Zachariah Jaramillo, Olivier Rodrigues","doi":"10.1146/annurev-arplant-070623-091552","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070623-091552","url":null,"abstract":"<p><p>Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied <i>Arabidopsis</i>-<i>Pseudomonas</i> pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures. 植物低温保存:在超低温下保存植物多样性的原理、应用和挑战。
IF 21.3 1区 生物学
Annual review of plant biology Pub Date : 2024-07-01 Epub Date: 2024-07-02 DOI: 10.1146/annurev-arplant-070623-103551
Manuela Nagel, Valerie Pence, Daniel Ballesteros, Maurizio Lambardi, Elena Popova, Bart Panis
{"title":"Plant Cryopreservation: Principles, Applications, and Challenges of Banking Plant Diversity at Ultralow Temperatures.","authors":"Manuela Nagel, Valerie Pence, Daniel Ballesteros, Maurizio Lambardi, Elena Popova, Bart Panis","doi":"10.1146/annurev-arplant-070623-103551","DOIUrl":"10.1146/annurev-arplant-070623-103551","url":null,"abstract":"<p><p>Progressive loss of plant diversity requires the protection of wild and agri-/horticultural species. For species whose seeds are extremely short-lived, or rarely or never produce seeds, or whose genetic makeup must be preserved, cryopreservation offers the only possibility for long-term conservation. At temperatures below freezing, most vegetative plant tissues suffer severe damage from ice crystal formation and require protection. In this review, we describe how increasing the concentration of cellular solutes by air drying or adding cryoprotectants, together with rapid cooling, results in a vitrified, highly viscous state in which cells can remain viable and be stored. On this basis, a range of dormant bud-freezing, slow-cooling, and (droplet-)vitrification protocols have been developed, but few are used to cryobank important agricultural/horticultural/timber and threatened species. To improve cryopreservation efficiency, the effects of cryoprotectants and molecular processes need to be understood and the costs for cryobanking reduced. However, overall, the long-term costs of cryopreservation are low, while the benefits are huge.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139429031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyamines: Their Role in Plant Development and Stress. 多胺:多胺:它们在植物发育和胁迫中的作用
IF 21.3 1区 生物学
Annual review of plant biology Pub Date : 2024-07-01 Epub Date: 2024-07-02 DOI: 10.1146/annurev-arplant-070623-110056
Miguel A Blázquez
{"title":"Polyamines: Their Role in Plant Development and Stress.","authors":"Miguel A Blázquez","doi":"10.1146/annurev-arplant-070623-110056","DOIUrl":"10.1146/annurev-arplant-070623-110056","url":null,"abstract":"<p><p>This review focuses on the intricate relationship between plant polyamines and the genetic circuits and signaling pathways that regulate various developmental programs and the defense responses of plants when faced with biotic and abiotic aggressions. Particular emphasis is placed on genetic evidence supporting the involvement of polyamines in specific processes, such as the pivotal role of thermospermine in regulating xylem cell differentiation and the significant contribution of polyamine metabolism in enhancing plant resilience to drought. Based on the numerous studies describing effects of the manipulation of plant polyamine levels, two conceptually different mechanisms for polyamine activity are discussed: direct participation of polyamines in translational regulation and the indirect production of hydrogen peroxide as a defensive mechanism against pathogens. By describing the multifaceted functions of polyamines, this review underscores the profound significance of these compounds in enabling plants to adapt and thrive in challenging environments.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139929755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments. 潜入水中:两栖植物作为研究植物适应水生环境的模型。
IF 21.3 1区 生物学
Annual review of plant biology Pub Date : 2024-07-01 Epub Date: 2024-07-02 DOI: 10.1146/annurev-arplant-062923-024919
Hiroyuki Koga, Shuka Ikematsu, Seisuke Kimura
{"title":"Diving into the Water: Amphibious Plants as a Model for Investigating Plant Adaptations to Aquatic Environments.","authors":"Hiroyuki Koga, Shuka Ikematsu, Seisuke Kimura","doi":"10.1146/annurev-arplant-062923-024919","DOIUrl":"10.1146/annurev-arplant-062923-024919","url":null,"abstract":"<p><p>Amphibious plants can grow and survive in both aquatic and terrestrial environments. This review explores the diverse adaptations that enable them to thrive in such contrasting habitats. Plants with amphibious lifestyles possess fascinating traits, and their phenotypic plasticity plays an important role in adaptations. Heterophylly, the ability to produce different leaf forms, is one such trait, with submerged leaves generally being longer, narrower, and thinner than aerial leaves. In addition to drastic changes in leaf contours, amphibious plants display significant anatomical and physiological changes, including a reduction in stomatal number and cuticle thickness and changes in photosynthesis mode. This review summarizes and compares the regulatory mechanisms and evolutionary origins of amphibious plants based on molecular biology studies actively conducted in recent years using novel model amphibious plant species. Studying amphibious plants will enhance our understanding of plant adaptations to aquatic environments.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":21.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LAFL Factors in Seed Development and Phase Transitions. 种子发育和阶段转换中的 LAFL 因素。
IF 23.9 1区 生物学
Annual review of plant biology Pub Date : 2024-04-24 DOI: 10.1146/annurev-arplant-070623-111458
Sonia Gazzarrini, Liang Song
{"title":"LAFL Factors in Seed Development and Phase Transitions.","authors":"Sonia Gazzarrini, Liang Song","doi":"10.1146/annurev-arplant-070623-111458","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070623-111458","url":null,"abstract":"Development is a chain reaction in which one event leads to another until the completion of a life cycle. Phase transitions are milestone events in the cycle of life. LEAFY COTYLEDON1 (LEC1), ABA INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 proteins, collectively known as LAFL, are master transcription factors (TFs) regulating seed and other developmental processes. Since the initial characterization of the LAFL genes (44, 71, 98-100), more than three decades of active research has generated tremendous amounts of knowledge about these TFs, whose roles in seed development and germination have been comprehensively reviewed (63, 43, 65, 81). Recent advances in cell biology and genetic and genomic tools have allowed the characterization of the LAFL regulatory networks in previously challenging tissues at a higher throughput and resolution in reference species and crops. In this review, we provide a holistic perspective by integrating advances at the epigenetic, transcriptional, posttranscriptional, and protein levels to exemplify the spatiotemporal regulation of the LAFL networks in Arabidopsis seed development and phase transitions, and we briefly discuss the evolution of these TF networks.","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":23.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation 保护进化潜力:将景观基因组学与现有方法相结合,为植物保护提供信息
IF 23.9 1区 生物学
Annual review of plant biology Pub Date : 2024-04-10 DOI: 10.1146/annurev-arplant-070523-044239
Sally N. Aitken, Rebecca Jordan, Hayley R. Tumas
{"title":"Conserving Evolutionary Potential: Combining Landscape Genomics with Established Methods to Inform Plant Conservation","authors":"Sally N. Aitken, Rebecca Jordan, Hayley R. Tumas","doi":"10.1146/annurev-arplant-070523-044239","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070523-044239","url":null,"abstract":"Biodiversity conservation requires conserving evolutionary potential—the capacity for wild populations to adapt. Understanding genetic diversity and evolutionary dynamics is critical for informing conservation decisions that enhance adaptability and persistence under environmental change. We review how emerging landscape genomic methods provide plant conservation programs with insights into evolutionary dynamics, including local adaptation and its environmental drivers. Landscape genomic approaches that explore relationships between genomic variation and environments complement rather than replace established population genomic and common garden approaches for assessing adaptive phenotypic variation, population structure, gene flow, and demography. Collectively, these approaches inform conservation actions, including genetic rescue, maladaptation prediction, and assisted gene flow. The greatest on-the-ground impacts from such studies will be realized when conservation practitioners are actively engaged in research and monitoring. Understanding the evolutionary dynamics shaping the genetic diversity of wild plant populations will inform plant conservation decisions that enhance the adaptability and persistence of species in an uncertain future.","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":23.9,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140570572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An RNA World. RNA世界。
IF 23.9 1区 生物学
Annual review of plant biology Pub Date : 2023-05-22 DOI: 10.1146/annurev-arplant-070622-021021
David C Baulcombe
{"title":"An RNA World.","authors":"David C Baulcombe","doi":"10.1146/annurev-arplant-070622-021021","DOIUrl":"https://doi.org/10.1146/annurev-arplant-070622-021021","url":null,"abstract":"<p><p>My research career started with an ambition to work out how genes are regulated in plants. I tried out various experimental systems-artichoke tissue culture in Edinburgh; soybean root nodules in Montreal; soybean hypocotyls in Athens, Georgia; and cereal aleurones in Cambridge-but eventually I discovered plant viruses. Viral satellite RNAs were my first interest, but I then explored transgenic and natural disease resistance and was led by curiosity into topics beyond virology, including RNA silencing, epigenetics, and more recently, genome evolution. On the way, I have learned about approaches to research, finding tractable systems, and taking academic research into the real world. I have always tried to consider the broader significance of our work, and my current projects address the definition of epigenetics, the arms race concept of disease resistance, and Darwin's abominable mystery.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":null,"pages":null},"PeriodicalIF":23.9,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9505870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信