Archives of Pharmacal Research最新文献

筛选
英文 中文
Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo Paritaprevir在体外和体内改善实验性急性肺损伤
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-06-12 DOI: 10.1007/s12272-023-01451-4
Rui Ren, Xin Wang, Zehui Xu, Wanglin Jiang
{"title":"Paritaprevir ameliorates experimental acute lung injury in vitro and in vivo","authors":"Rui Ren,&nbsp;Xin Wang,&nbsp;Zehui Xu,&nbsp;Wanglin Jiang","doi":"10.1007/s12272-023-01451-4","DOIUrl":"10.1007/s12272-023-01451-4","url":null,"abstract":"<div><p>Paritaprevir is a potent inhibitor of the NS3/4A protease used to treat chronic hepatitis C virus infection. However, its therapeutic effect on acute lung injury (ALI) remains to be elucidated. In this study, we investigated the effect of paritaprevir on a lipopolysaccharide (LPS)-induced two-hit rat ALI model. The anti-ALI mechanism of paritaprevir was also studied in human pulmonary microvascular endothelial (HM) cells following LPS-induced injury in <i>vitro</i>. Administration of 30 mg/kg paritaprevir for 3 days protected rats from LPS-induced ALI, as reflected by the changes in the lung coefficient (from 0.75 to 0.64) and lung pathology scores (from 5.17 to 5.20). Furthermore, the levels of the protective adhesion protein VE-cadherin and tight junction protein claudin-5 increased, and the cytoplasmic p-FOX-O1 and nuclear β-catenin and FOX-O1 levels decreased. Similar effects were observed in vitro with LPS-treated HM cells, including decreased nuclear β-catenin and FOX-O1 levels and higher VE-cadherin and claudin-5 levels. Moreover, β-catenin inhibition resulted in higher p-FOX-O1 levels in the cytoplasm. These results suggested that paritaprevir could alleviate experimental ALI via the β-catenin/p-Akt/ FOX-O1 signaling pathway.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01451-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9797082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges 利用深度学习研究神经系统疾病的隐藏突变,以应对治疗挑战
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-06-01 DOI: 10.1007/s12272-023-01450-5
Sumin Yang, Sung-Hyun Kim, Mingon Kang, Jae-Yeol Joo
{"title":"Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges","authors":"Sumin Yang,&nbsp;Sung-Hyun Kim,&nbsp;Mingon Kang,&nbsp;Jae-Yeol Joo","doi":"10.1007/s12272-023-01450-5","DOIUrl":"10.1007/s12272-023-01450-5","url":null,"abstract":"<div><p>The relevant study of transcriptome-wide variations and neurological disorders in the evolved field of genomic data science is on the rise. Deep learning has been highlighted utilizing algorithms on massive amounts of data in a human-like manner, and is expected to predict the dependency or druggability of hidden mutations within the genome. Enormous mutational variants in coding and noncoding transcripts have been discovered along the genome by far, despite of the fine-tuned genetic proofreading machinery. These variants could be capable of inducing various pathological conditions, including neurological disorders, which require lifelong care. Several limitations and questions emerge, including the use of conventional processes via limited patient-driven sequence acquisitions and decoding-based inferences as well as how rare variants can be deduced as a population-specific etiology. These puzzles require harnessing of advanced systems for precise disease prediction, drug development and drug applications. In this review, we summarize the pathophysiological discoveries of pathogenic variants in both coding and noncoding transcripts in neurological disorders, and the current advantage of deep learning applications. In addition, we discuss the challenges encountered and how to outperform them with advancing interpretation.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9785968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Recent advances in GPR35 pharmacology; 5-HIAA serotonin metabolite becomes a ligand GPR35的药理研究进展5-HIAA 5-羟色胺代谢物成为配体
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-05-25 DOI: 10.1007/s12272-023-01449-y
Dong-Soon Im
{"title":"Recent advances in GPR35 pharmacology; 5-HIAA serotonin metabolite becomes a ligand","authors":"Dong-Soon Im","doi":"10.1007/s12272-023-01449-y","DOIUrl":"10.1007/s12272-023-01449-y","url":null,"abstract":"<div><p>GPR35, an orphan receptor, has been waiting for its ligand since its cloning in 1998. Many endogenous and exogenous molecules have been suggested to act as agonists of GPR35 including kynurenic acid, zaprinast, lysophosphatidic acid, and CXCL17. However, complex and controversial responses to ligands among species have become a huge hurdle in the development of therapeutics in addition to the orphan state. Recently, a serotonin metabolite, 5-hydroxyindoleacetic acid (5-HIAA), is reported to be a high potency ligand for GPR35 by investigating the increased expression of GPR35 in neutrophils. In addition, a transgenic knock-in mouse line is developed, in which GPR35 was replaced with a human ortholog, making it possible not only to overcome the different selectivity of agonists among species but also to conduct therapeutic experiments on human GPR35 in mouse models. In the present article, I review the recent advances and prospective therapeutic directions in GPR35 research. Especially, I’d like to draw attention of readers to the finding of 5-HIAA as a ligand of GPR35 and lead to apply the 5-HIAA and human GPR35 knock-in mice to their research fields in a variety of pathophysiological conditions.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9785380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide in healthy subjects CYP2C9和CYP2C19基因多态性对格列齐特在健康人体内药代动力学和药效学的影响
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-04-25 DOI: 10.1007/s12272-023-01448-z
Pureum Kang, Chang-Keun Cho, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Chang-Ik Choi, Jung-Woo Bae
{"title":"Effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide in healthy subjects","authors":"Pureum Kang,&nbsp;Chang-Keun Cho,&nbsp;Choon-Gon Jang,&nbsp;Seok-Yong Lee,&nbsp;Yun Jeong Lee,&nbsp;Chang-Ik Choi,&nbsp;Jung-Woo Bae","doi":"10.1007/s12272-023-01448-z","DOIUrl":"10.1007/s12272-023-01448-z","url":null,"abstract":"<div><p>Gliclazide metabolism is mediated by genetically polymorphic CYP2C9 and CYP2C19 enzymes. We investigated the effects of <i>CYP2C9</i> and <i>CYP2C19</i> genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide. Twenty-seven Korean healthy volunteers were administered a single oral dose of gliclazide 80 mg. The plasma concentration of gliclazide was quantified for the pharmacokinetic analysis and plasma concentrations of glucose and insulin were measured as pharmacodynamic parameters. The pharmacokinetics of gliclazide showed a significant difference according to the number of defective alleles of combined <i>CYP2C9</i> and <i>CYP2C19</i>. The two defective alleles group (group 3) and one defective allele group (group 2) showed 2.34- and 1.46-fold higher AUC<sub>0–∞</sub> (<i>P</i> &lt; 0.001), and 57.1 and 32.3% lower CL/F (<i>P</i> &lt; 0.001), compared to those of the no defective allele group (group 1), respectively. The <i>CYP2C9IM–</i><i>CYP2C19IM</i> group had AUC<sub>0–∞</sub> increase of 1.49-fold (<i>P</i> &lt; 0.05) and CL/F decrease by 29.9% (<i>P</i> &lt; 0.01), compared with the <i>CYP2C9 Normal Metabolizer</i> (<i>CYP2C9NM</i>)–<i>CYP2C19IM</i> group. The <i>CYP2C9NM–CYP2C19PM</i> group and <i>CYP2C9NM–CYP2C19IM</i> group showed 2.41- and 1.51-fold higher AUC<sub>0–∞</sub> (<i>P</i> &lt; 0.001), and 59.6 and 35.4% lower CL/F (<i>P</i> &lt; 0.001), compared to those of the <i>CYP2C9NM–CYP2C19NM</i> group, respectively. The results represented that <i>CYP2C9</i> and <i>CYP2C19</i> genetic polymorphisms significantly affected the pharmacokinetics of gliclazide. Although the genetic polymorphism of <i>CYP2C19</i> had a greater effect on the pharmacokinetics of gliclazide, the genetic polymorphism of <i>CYP2C9</i> also had a significant effect. On the other hand, plasma glucose and insulin responses to gliclazide were not significantly affected by the <i>CYP2C9–CYP2C19</i> genotypes, requiring further well-controlled studies with long-term dosing of gliclazide in diabetic patients.\u0000</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01448-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9423494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities 抗体药物偶联物作为靶向癌症治疗:过去的发展,目前的挑战和未来的机遇
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-04-18 DOI: 10.1007/s12272-023-01447-0
Ritwik Maiti, Bhumika Patel, Nrupesh Patel, Mehul Patel, Alkesh Patel, Nirav Dhanesha
{"title":"Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities","authors":"Ritwik Maiti,&nbsp;Bhumika Patel,&nbsp;Nrupesh Patel,&nbsp;Mehul Patel,&nbsp;Alkesh Patel,&nbsp;Nirav Dhanesha","doi":"10.1007/s12272-023-01447-0","DOIUrl":"10.1007/s12272-023-01447-0","url":null,"abstract":"<div><p>Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC—antibody, linker, and cytotoxic payload—along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability &amp; toxicity of ADCs, different types of linkers &amp; various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9772168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Phytochemistry and pharmacology of natural prenylated flavonoids 天然烯丙基黄酮的植物化学和药理学研究
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-04-14 DOI: 10.1007/s12272-023-01443-4
Hua-Wei Lv, Qiao-Liang Wang, Meng Luo, Meng-Di Zhu, Hui-Min Liang, Wen-Jing Li, Hai Cai, Zhong-Bo Zhou, Hong Wang, Sheng-Qiang Tong, Xing-Nuo Li
{"title":"Phytochemistry and pharmacology of natural prenylated flavonoids","authors":"Hua-Wei Lv,&nbsp;Qiao-Liang Wang,&nbsp;Meng Luo,&nbsp;Meng-Di Zhu,&nbsp;Hui-Min Liang,&nbsp;Wen-Jing Li,&nbsp;Hai Cai,&nbsp;Zhong-Bo Zhou,&nbsp;Hong Wang,&nbsp;Sheng-Qiang Tong,&nbsp;Xing-Nuo Li","doi":"10.1007/s12272-023-01443-4","DOIUrl":"10.1007/s12272-023-01443-4","url":null,"abstract":"<div><p>Prenylated flavonoids are a special kind of flavonoid derivative possessing one or more prenyl groups in the parent nucleus of the flavonoid. The presence of the prenyl side chain enriched the structural diversity of flavonoids and increased their bioactivity and bioavailability. Prenylated flavonoids show a wide range of biological activities, such as anti-cancer, anti-inflammatory, neuroprotective, anti-diabetic, anti-obesity, cardioprotective effects, and anti-osteoclastogenic activities. In recent years, many compounds with significant activity have been discovered with the continuous excavation of the medicinal value of prenylated flavonoids, and have attracted the extensive attention of pharmacologists. This review summarizes recent progress on research into natural active prenylated flavonoids to promote new discoveries of their medicinal value.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01443-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9348366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions 曲霉共培养:对其次生代谢物和微生物相互作用的最新见解
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-04-10 DOI: 10.1007/s12272-023-01442-5
Abdullah Alanzi, Esraa A. Elhawary, Mohamed L. Ashour, Ashaimaa Y. Moussa
{"title":"Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions","authors":"Abdullah Alanzi,&nbsp;Esraa A. Elhawary,&nbsp;Mohamed L. Ashour,&nbsp;Ashaimaa Y. Moussa","doi":"10.1007/s12272-023-01442-5","DOIUrl":"10.1007/s12272-023-01442-5","url":null,"abstract":"<div><p>There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is <i>Aspergillus</i> microbial cocultures. The genome of <i>Aspergillus</i> species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of <i>Aspergillus</i> cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several <i>Aspergillus</i> species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in <i>Aspergillus</i> cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from <i>Aspergillus</i> cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01442-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9343520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway 二甲双胍通过激活AMPK/PPARα通路减轻肥胖胰岛素抵抗大鼠的肾功能障碍
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-26 DOI: 10.1007/s12272-023-01439-0
Laongdao Thongnak, Nattavadee Pengrattanachot, Sasivimon Promsan, Nichakorn Phengpol, Prempree Sutthasupha, Krit Jaikumkao, Anusorn Lungkaphin
{"title":"Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway","authors":"Laongdao Thongnak,&nbsp;Nattavadee Pengrattanachot,&nbsp;Sasivimon Promsan,&nbsp;Nichakorn Phengpol,&nbsp;Prempree Sutthasupha,&nbsp;Krit Jaikumkao,&nbsp;Anusorn Lungkaphin","doi":"10.1007/s12272-023-01439-0","DOIUrl":"10.1007/s12272-023-01439-0","url":null,"abstract":"<div><p>Insulin signaling and lipid metabolism are disrupted by long-term consumption of a high-fat diet (HFD). This disruption can lead to insulin resistance, dyslipidemia and subsequently renal dysfunction as a consequence of the inactivation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) or AMPK/PPARα pathways. We investigated the impact of metformin on the prevention of renal dysfunction through the modulation of AMPK-regulated PPARα-dependent pathways in insulin-resistant rats induced by a HFD. Male Wistar rats were fed a HFD for 16 weeks to induce insulin resistance. After insulin resistance had been confirmed, metformin (30 mg/kg) or gemfibrozil (50 mg/kg) was given orally for 8 weeks. Evidence of insulin resistance, dyslipidemia, lipid accumulation and kidney injury were observed in HF rats. Impairment of lipid oxidation, energy metabolism and renal organic anion transporter 3 (Oat3) expression and function were demonstrated in HF rats. Metformin can stimulate the AMPK/PPARα pathways and suppress sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase (FAS) signaling (SREBP1/FAS) to enable the regulation of lipid metabolism. Renal inflammatory markers and renal fibrosis expression induced by a HFD were more effectively reduced after metformin treatment than after gemfibrozil treatment. Interestingly, renal Oat3 function and expression and kidney injury were improved following metformin and gemfibrozil treatment. Renal cluster of differentiation 36 (CD36) or sodium glucose cotransporter type 2 (SGLT2) expression did not differ after treatment with metformin or gemfibrozil. Metformin and gemfibrozil could reduce the impairment of renal injury in obese conditions induced by a HFD through the AMPK/PPARα-dependent pathway. Interestingly, metformin demonstrated greater efficacy than gemfibrozil in attenuating renal lipotoxicity through the AMPK-regulated SREBP1/FAS signaling pathway.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01439-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9420079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials 二甲双胍的作用、作用机制及临床应用:潜力药物,潜力无限
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-24 DOI: 10.1007/s12272-023-01445-2
Jianhong Liu, Ming Zhang, Dan Deng, Xiao Zhu
{"title":"The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials","authors":"Jianhong Liu,&nbsp;Ming Zhang,&nbsp;Dan Deng,&nbsp;Xiao Zhu","doi":"10.1007/s12272-023-01445-2","DOIUrl":"10.1007/s12272-023-01445-2","url":null,"abstract":"<div><p>Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9771022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight 乳香酸调节NOX/p38 MAPK/PPARα通路和miR-155表达减轻实验性酒精性肝病小鼠模型中的肝损伤:新的机制见解
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-23 DOI: 10.1007/s12272-023-01441-6
Rania M. Salama, Samah S. Abbas, Samar F. Darwish, Al Aliaa Sallam, Noura F. Elmongy, Sara A. El Wakeel
{"title":"Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight","authors":"Rania M. Salama,&nbsp;Samah S. Abbas,&nbsp;Samar F. Darwish,&nbsp;Al Aliaa Sallam,&nbsp;Noura F. Elmongy,&nbsp;Sara A. El Wakeel","doi":"10.1007/s12272-023-01441-6","DOIUrl":"10.1007/s12272-023-01441-6","url":null,"abstract":"<div><p>Alcoholic liver disease (ALD) refers to hepatic ailments induced by excessive alcohol intake. The pathogenesis of ALD comprises a complex interplay between various mechanistic pathways, among which inflammation and oxidative stress are key players. Boswellic acids (BAs), found in <i>Boswellia serrata</i>, have shown hepatoprotective effects owing to their antioxidant and anti-inflammatory activities, nevertheless, their therapeutic potential against ALD has not been previously investigated. Hence, this study was performed to depict the possible protective effect of BAs and detect their underlying mechanism of action in an experimentally-induced ALD mouse model. Male BALB/c mice were equally categorized into six groups: control, BAs-treated, ALD, and ALD that received BAs at three-dose levels (125, 250, and 500 mg/kg) by oral gavage for 14 days. Results showed that the high dose of BAs had the most protective impact against ALD according to histopathology examination, blood alcohol concentration (BAC), and liver function enzymes. Mechanistic investigations revealed that BAs (500 mg/kg) caused a significant decrease in cytochrome P450 2E1(CYP2E1), nicotine adenine dinucleotide phosphate oxidase (NOX) 1/2/4, p38 mitogen-activated protein kinase (MAPK), and sterol regulatory element-binding protein-1c (SREBP-1c) levels, and the expression of miR-155, yet increased peroxisome proliferator-activated receptor alpha (PPARα) levels. This led to an improvement in lipid profile and reduced hepatic inflammation, oxidative stress, and apoptosis indices. In summary, our study concludes that BAs can protect against ethanol-induced hepatic injury, via modulating NOX/p38 MAPK/PPARα pathways and miR-155 expression.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":null,"pages":null},"PeriodicalIF":6.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01441-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9344106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信