Archives of Pharmacal Research最新文献

筛选
英文 中文
Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions 曲霉共培养:对其次生代谢物和微生物相互作用的最新见解
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-04-10 DOI: 10.1007/s12272-023-01442-5
Abdullah Alanzi, Esraa A. Elhawary, Mohamed L. Ashour, Ashaimaa Y. Moussa
{"title":"Aspergillus co-cultures: A recent insight into their secondary metabolites and microbial interactions","authors":"Abdullah Alanzi,&nbsp;Esraa A. Elhawary,&nbsp;Mohamed L. Ashour,&nbsp;Ashaimaa Y. Moussa","doi":"10.1007/s12272-023-01442-5","DOIUrl":"10.1007/s12272-023-01442-5","url":null,"abstract":"<div><p>There is an urgent need for novel antibiotics to combat emerging resistant microbial strains. One of the most pressing resources is <i>Aspergillus</i> microbial cocultures. The genome of <i>Aspergillus</i> species comprises a far larger number of novel gene clusters than previously expected, and novel strategies and approaches are essential to exploit this potential source of new drugs and pharmacological agents. This is the first review consulting recent developments and chemical diversity of <i>Aspergillus</i> cocultures and highlighting its untapped richness. The analyzed data revealed that cocultivation of several <i>Aspergillus</i> species with other microorganisms, including bacteria, plants, and fungi, is a source of novel bioactive natural products. Various vital chemical skeleton leads were newly produced or augmented in <i>Aspergillus</i> cocultures, among which were taxol, cytochalasans, notamides, pentapeptides, silibinin, and allianthrones. The possibility of mycotoxin production or complete elimination in cocultivations was detected, which pave the way for better decontamination strategies. Most cocultures revealed a remarkable improvement in their antimicrobial or cytotoxic behavior due to their produced chemical patterns; for instance, weldone and asperterrin whose antitumor and antibacterial activities, respectively, were superior. Microbial cocultivation elicited the upregulation or production of specific metabolites whose importance and significance are yet to be revealed. With more than 155 compounds isolated from <i>Aspergillus</i> cocultures in the last 10 years, showing overproduction, reduction, or complete suppression under the optimized coculture circumstances, this study filled a gap for medicinal chemists searching for new lead sources or bioactive molecules as anticancer agents or antimicrobials.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 4","pages":"273 - 298"},"PeriodicalIF":6.7,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01442-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9343520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway 二甲双胍通过激活AMPK/PPARα通路减轻肥胖胰岛素抵抗大鼠的肾功能障碍
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-26 DOI: 10.1007/s12272-023-01439-0
Laongdao Thongnak, Nattavadee Pengrattanachot, Sasivimon Promsan, Nichakorn Phengpol, Prempree Sutthasupha, Krit Jaikumkao, Anusorn Lungkaphin
{"title":"Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway","authors":"Laongdao Thongnak,&nbsp;Nattavadee Pengrattanachot,&nbsp;Sasivimon Promsan,&nbsp;Nichakorn Phengpol,&nbsp;Prempree Sutthasupha,&nbsp;Krit Jaikumkao,&nbsp;Anusorn Lungkaphin","doi":"10.1007/s12272-023-01439-0","DOIUrl":"10.1007/s12272-023-01439-0","url":null,"abstract":"<div><p>Insulin signaling and lipid metabolism are disrupted by long-term consumption of a high-fat diet (HFD). This disruption can lead to insulin resistance, dyslipidemia and subsequently renal dysfunction as a consequence of the inactivation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) or AMPK/PPARα pathways. We investigated the impact of metformin on the prevention of renal dysfunction through the modulation of AMPK-regulated PPARα-dependent pathways in insulin-resistant rats induced by a HFD. Male Wistar rats were fed a HFD for 16 weeks to induce insulin resistance. After insulin resistance had been confirmed, metformin (30 mg/kg) or gemfibrozil (50 mg/kg) was given orally for 8 weeks. Evidence of insulin resistance, dyslipidemia, lipid accumulation and kidney injury were observed in HF rats. Impairment of lipid oxidation, energy metabolism and renal organic anion transporter 3 (Oat3) expression and function were demonstrated in HF rats. Metformin can stimulate the AMPK/PPARα pathways and suppress sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase (FAS) signaling (SREBP1/FAS) to enable the regulation of lipid metabolism. Renal inflammatory markers and renal fibrosis expression induced by a HFD were more effectively reduced after metformin treatment than after gemfibrozil treatment. Interestingly, renal Oat3 function and expression and kidney injury were improved following metformin and gemfibrozil treatment. Renal cluster of differentiation 36 (CD36) or sodium glucose cotransporter type 2 (SGLT2) expression did not differ after treatment with metformin or gemfibrozil. Metformin and gemfibrozil could reduce the impairment of renal injury in obese conditions induced by a HFD through the AMPK/PPARα-dependent pathway. Interestingly, metformin demonstrated greater efficacy than gemfibrozil in attenuating renal lipotoxicity through the AMPK-regulated SREBP1/FAS signaling pathway.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 5","pages":"408 - 422"},"PeriodicalIF":6.7,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01439-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9420079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials 二甲双胍的作用、作用机制及临床应用:潜力药物,潜力无限
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-24 DOI: 10.1007/s12272-023-01445-2
Jianhong Liu, Ming Zhang, Dan Deng, Xiao Zhu
{"title":"The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials","authors":"Jianhong Liu,&nbsp;Ming Zhang,&nbsp;Dan Deng,&nbsp;Xiao Zhu","doi":"10.1007/s12272-023-01445-2","DOIUrl":"10.1007/s12272-023-01445-2","url":null,"abstract":"<div><p>Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 5","pages":"389 - 407"},"PeriodicalIF":6.7,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9771022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight 乳香酸调节NOX/p38 MAPK/PPARα通路和miR-155表达减轻实验性酒精性肝病小鼠模型中的肝损伤:新的机制见解
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-23 DOI: 10.1007/s12272-023-01441-6
Rania M. Salama, Samah S. Abbas, Samar F. Darwish, Al Aliaa Sallam, Noura F. Elmongy, Sara A. El Wakeel
{"title":"Regulation of NOX/p38 MAPK/PPARα pathways and miR-155 expression by boswellic acids reduces hepatic injury in experimentally-induced alcoholic liver disease mouse model: novel mechanistic insight","authors":"Rania M. Salama,&nbsp;Samah S. Abbas,&nbsp;Samar F. Darwish,&nbsp;Al Aliaa Sallam,&nbsp;Noura F. Elmongy,&nbsp;Sara A. El Wakeel","doi":"10.1007/s12272-023-01441-6","DOIUrl":"10.1007/s12272-023-01441-6","url":null,"abstract":"<div><p>Alcoholic liver disease (ALD) refers to hepatic ailments induced by excessive alcohol intake. The pathogenesis of ALD comprises a complex interplay between various mechanistic pathways, among which inflammation and oxidative stress are key players. Boswellic acids (BAs), found in <i>Boswellia serrata</i>, have shown hepatoprotective effects owing to their antioxidant and anti-inflammatory activities, nevertheless, their therapeutic potential against ALD has not been previously investigated. Hence, this study was performed to depict the possible protective effect of BAs and detect their underlying mechanism of action in an experimentally-induced ALD mouse model. Male BALB/c mice were equally categorized into six groups: control, BAs-treated, ALD, and ALD that received BAs at three-dose levels (125, 250, and 500 mg/kg) by oral gavage for 14 days. Results showed that the high dose of BAs had the most protective impact against ALD according to histopathology examination, blood alcohol concentration (BAC), and liver function enzymes. Mechanistic investigations revealed that BAs (500 mg/kg) caused a significant decrease in cytochrome P450 2E1(CYP2E1), nicotine adenine dinucleotide phosphate oxidase (NOX) 1/2/4, p38 mitogen-activated protein kinase (MAPK), and sterol regulatory element-binding protein-1c (SREBP-1c) levels, and the expression of miR-155, yet increased peroxisome proliferator-activated receptor alpha (PPARα) levels. This led to an improvement in lipid profile and reduced hepatic inflammation, oxidative stress, and apoptosis indices. In summary, our study concludes that BAs can protect against ethanol-induced hepatic injury, via modulating NOX/p38 MAPK/PPARα pathways and miR-155 expression.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 4","pages":"323 - 338"},"PeriodicalIF":6.7,"publicationDate":"2023-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01441-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9344106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice 低剂量姜黄素增强幼鼠海马神经发生和记忆保留
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-22 DOI: 10.1007/s12272-023-01440-7
Yujeong Lee, Hee Ra Park, Joo Yeon Lee, Jaehoon Kim, Seonguk Yang, Chany Lee, Kipom Kim, Hyung Sik Kim, Seung-Cheol Chang, Jaewon Lee
{"title":"Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice","authors":"Yujeong Lee,&nbsp;Hee Ra Park,&nbsp;Joo Yeon Lee,&nbsp;Jaehoon Kim,&nbsp;Seonguk Yang,&nbsp;Chany Lee,&nbsp;Kipom Kim,&nbsp;Hyung Sik Kim,&nbsp;Seung-Cheol Chang,&nbsp;Jaewon Lee","doi":"10.1007/s12272-023-01440-7","DOIUrl":"10.1007/s12272-023-01440-7","url":null,"abstract":"<div><p>Adult neurogenesis generates new functional neurons from adult neural stem cells in various regions, including the subventricular zone (SVZ) of the lateral ventricles and subgranular zone (SGZ) of hippocampal dentate gyrus (DG). Available evidence shows hippocampal neurogenesis can be negatively or positively regulated by dietary components. In a previous study, we reported that curcumin (diferuloylmethane; a polyphenolic found in curry spice) stimulates the proliferation of embryonic neural stem cells (NSCs) by activating adaptive cellular stress responses. Here, we investigated whether subchronic administration of curcumin (once daily at 0.4, 2, or 10 mg/kg for 14 days) promotes hippocampal neurogenesis and neurocognitive function in young (5-week-old) mice. Oral administration of low-dose curcumin (0.4 mg/kg) increased the proliferation and survival of newly generated cells in hippocampus, but surprisingly, high-dose curcumin (10 mg/kg) did not effectively upregulate the proliferation or survival of newborn cells. Furthermore, hippocampal BDNF levels and phosphorylated CREB activity were elevated in only low-dose curcumin-treated mice. Passive avoidance testing revealed that low-dose curcumin increased cross-over latency times, indicating enhanced memory retention, and an in vitro study showed that low-concentration curcumin increased the proliferative activity of neural progenitor cells (NPCs) by upregulating NF1X levels. Collectively, our findings suggest that low-dose curcumin has neurogenic effects and that it may prevent age and neurodegenerative disease-related cognitive deficits.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 5","pages":"423 - 437"},"PeriodicalIF":6.7,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01440-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9410905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies EGF,伤口愈合的老手:重点介绍其作用方式,临床应用,重点是伤口治疗,以及最近的给药策略
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-16 DOI: 10.1007/s12272-023-01444-3
Kanchan Shakhakarmi, Jo-Eun Seo, Shrawani Lamichhane, Chhitij Thapa, Sangkil Lee
{"title":"EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies","authors":"Kanchan Shakhakarmi,&nbsp;Jo-Eun Seo,&nbsp;Shrawani Lamichhane,&nbsp;Chhitij Thapa,&nbsp;Sangkil Lee","doi":"10.1007/s12272-023-01444-3","DOIUrl":"10.1007/s12272-023-01444-3","url":null,"abstract":"<div><p>Epidermal growth factor (EGF) has been used in wound management and regenerative medicine since the late 1980s. It has been widely utilized for a long time and still is because of its excellent tolerability and efficacy. EGF has many applications in tissue engineering, cancer therapy, lung diseases, gastric ulcers, and wound healing. Nevertheless, its in vivo and during storage stability is a primary concern. This review focuses on the topical use of EGF, especially in chronic wound healing, the emerging use of biomaterials to deliver it, and future research possibilities. To successfully deliver EGF to wounds, a delivery system that is proteolytically resistant and stable over the long term is required. Biomaterials are an area of interest for the development of such systems. These systems may be used in non-healing wounds such as diabetic foot ulcers, pressure ulcers, and burns. In these pathologies, EGF can reduce the risk of amputation of the lower extremities, as it accelerates the wound healing process. Furthermore, appropriate delivery system would also stabilize and control the EGF release profile in a wound. Several in vitro and in vivo studies have already proven the efficacy of such systems in the above-mentioned types of wounds. Moreover, several formulations such as ointments and intralesional injections are already available on the market. However, these products are still problematic in terms of inadequate diffusion of EGF, low bioavailability storage conditions, and shelf-life. This review discusses the nano formulations comprising biomaterials infused with EGF which could be a promising delivery system for chronic wound healing in the future.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 4","pages":"299 - 322"},"PeriodicalIF":6.7,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9343263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Apocynin abrogates methotrexate-induced nephrotoxicity: role of TLR4/NF-κB-p65/p38-MAPK, IL-6/STAT-3, PPAR-γ, and SIRT1/FOXO3 signaling pathways 罗布麻苷消除甲氨蝶呤诱导的肾毒性:TLR4/NF-κB-p65/p38-MAPK、IL-6/STAT-3、PPAR-γ和SIRT1/FOXO3信号通路的作用
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-13 DOI: 10.1007/s12272-023-01436-3
Emad H. M. Hassanein, Ahmed M. Sayed, Omnia A. M. Abd El-Ghafar, Zainab M. M. Omar, Eman K. Rashwan, Zuhair M. Mohammedsaleh, So Young Kyung, Jae Hyeon Park, Hyung Sik Kim, Fares E. M. Ali
{"title":"Apocynin abrogates methotrexate-induced nephrotoxicity: role of TLR4/NF-κB-p65/p38-MAPK, IL-6/STAT-3, PPAR-γ, and SIRT1/FOXO3 signaling pathways","authors":"Emad H. M. Hassanein,&nbsp;Ahmed M. Sayed,&nbsp;Omnia A. M. Abd El-Ghafar,&nbsp;Zainab M. M. Omar,&nbsp;Eman K. Rashwan,&nbsp;Zuhair M. Mohammedsaleh,&nbsp;So Young Kyung,&nbsp;Jae Hyeon Park,&nbsp;Hyung Sik Kim,&nbsp;Fares E. M. Ali","doi":"10.1007/s12272-023-01436-3","DOIUrl":"10.1007/s12272-023-01436-3","url":null,"abstract":"<div><p>The present study was designed to evaluate the potential renoprotective impacts of apocynin (APC) against nephrotoxicity induced by methotrexate (MTX) administration. To fulfill this aim, rats were allocated into four groups: control; APC (100 mg/kg/day; orally); MTX (20 mg/kg; single intraperitoneal dose at the end of the 5th day of the experiment); and APC +MTX (APC was given orally for 5 days before and 5 days after induction of renal toxicity by MTX). On the 11th day, samples were collected to estimate kidney function biomarkers, oxidative stress, pro-inflammatory cytokines, and other molecular targets. Compared to the MTX control group, treatment with APC significantly decreased urea, creatinine, and KIM-1 levels and improved kidney histological alterations. Furthermore, APC restored oxidant/antioxidant balance, as evidenced by a remarkable alleviation of MDA, GSH, SOD, and MPO levels. Additionally, the iNOS, NO, p-NF-κB-p65, Ace-NF-κB-p65, TLR4, p-p38-MAPK, p-JAK1, and p-STAT-3 expressions were reduced, while the IκBα, PPAR-γ, <i>SIRT1</i>, and <i>FOXO3</i> expressions were significantly increased. In NRK-52E cells, MTX-induced cytotoxicity was protected by APC in a concentration-dependent manner. In addition, increased expression of p-STAT-3 and p-JAK1/2 levels were reduced in MTX-treated NRK-52E cells by APC. The in vitro experiments revealed that APC-protected MTX-mediated renal tubular epithelial cells were damaged by inhibiting the JAK/STAT3 pathway. Besides, our in vivo and in vitro results were confirmed by predicting computational pharmacology results using molecular docking and network pharmacology analysis. In conclusion, our findings proved that APC could be a good candidate for MTX-induced renal damage due to its strong antioxidative and anti-inflammatory bioactivities.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 4","pages":"339 - 359"},"PeriodicalIF":6.7,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9347841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Engineered fibrotic liver-targeted truncated transforming growth factor β receptor type II variant for superior anti-liver fibrosis therapy 工程纤维化肝靶向截断转化生长因子β受体II型变异体用于卓越的抗肝纤维化治疗
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-11 DOI: 10.1007/s12272-023-01435-4
Manman Ma, Xiaohua Wang, Xiaohui Liu, Yang Han, Yanhui Chu, Yanzhong Guan, Haifeng Liu
{"title":"Engineered fibrotic liver-targeted truncated transforming growth factor β receptor type II variant for superior anti-liver fibrosis therapy","authors":"Manman Ma,&nbsp;Xiaohua Wang,&nbsp;Xiaohui Liu,&nbsp;Yang Han,&nbsp;Yanhui Chu,&nbsp;Yanzhong Guan,&nbsp;Haifeng Liu","doi":"10.1007/s12272-023-01435-4","DOIUrl":"10.1007/s12272-023-01435-4","url":null,"abstract":"<div><p>Truncated transforming growth factor β receptor type II (tTβRII) is a promising anti-liver fibrotic candidate because it serves as a trap for binding excessive TGF-β1 by means of competing with wild type TβRII (wtTβRII). However, the widespread application of tTβRII for the treatment of liver fibrosis has been limited by its poor fibrotic liver-homing capacity. Herein, we designed a novel tTβRII variant Z-tTβRII by fusing the platelet-derived growth factor β receptor (PDGFβR)-specific affibody Z<sub>PDGFβR</sub> to the N-terminus of tTβRII. The target protein Z-tTβRII was produced using <i>Escherichia coli</i> expression system. In vitro and in vivo studies showed that Z-tTβRII has a superior specific fibrotic liver-targeting potential via the engagement of PDGFβR-overexpressing activated hepatic stellate cells (aHSCs) in liver fibrosis. Moreover, Z-tTβRII significantly inhibited cell migration and invasion, and downregulated fibrosis- and TGF-β1/Smad pathway-related protein levels in TGF-β1-stimiluated HSC-T6 cells. Furthermore, Z-tTβRII remarkably ameliorated liver histopathology, mitigated the fibrosis responses and blocked TGF-β1/Smad signaling pathway in CCl<sub>4</sub>-induced liver fibrotic mice. More importantly, Z-tTβRII exhibits a higher fibrotic liver-targeting potential and stronger anti-fibrotic effects than either its parent tTβRII or former variant BiPPB-tTβRII (PDGFβR-binding peptide BiPPB modified tTβRII). In addition, Z-tTβRII shows no significant sign of potential side effects in other vital organs in liver fibrotic mice. Taken together, we conclude that Z-tTβRII with its a high fibrotic liver-homing potential, holds a superior anti-fibrotic activity in liver fibrosis in vitro and in vivo, which may be a potential candidate for targeted therapy for liver fibrosis.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 3","pages":"177 - 191"},"PeriodicalIF":6.7,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9238736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cathepsin B maturation plays a critical role in leptin-induced hepatic cancer cell growth through activation of NLRP3 inflammasomes 组织蛋白酶B成熟通过激活NLRP3炎性小体在瘦素诱导的肝癌细胞生长中起关键作用
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-11 DOI: 10.1007/s12272-023-01437-2
ThiKem Nguyen, Raut Pawan Kumar, Pil-Hoon Park
{"title":"Cathepsin B maturation plays a critical role in leptin-induced hepatic cancer cell growth through activation of NLRP3 inflammasomes","authors":"ThiKem Nguyen,&nbsp;Raut Pawan Kumar,&nbsp;Pil-Hoon Park","doi":"10.1007/s12272-023-01437-2","DOIUrl":"10.1007/s12272-023-01437-2","url":null,"abstract":"<div><p>Leptin, an adipose tissue-derived hormone, exhibits potent tumor promoting effects through various mechanisms. Cathepsin B, a member of the lysosomal cysteine proteases, has been shown to modulate the growth of cancer cells. In this study, we have investigated the role of cathepsin B signaling in leptin-induced hepatic cancer growth. Leptin treatment caused significant increase in the levels of active cathepsin B through the axis of endoplasmic reticulum stress and autophagy induction without significant effects on pre- and pro-forms of cathepsin B. Interestingly, inhibition of cathepsin B signaling by gene silencing or treatment with a selective pharmacological inhibitor (CA-074) prevented leptin-enhanced viability of hepatic cancer cell and suppressed progression of cell cycle, indicating the critical role of cathepsin B in leptin-induced hepatic cancer growth. We have further observed that maturation of cathepsin B is required for NLRP3 inflammasomes activation, which is implicated in the growth of hepatic cancer cell. The crucial roles of cathepsin B maturation in leptin-induced hepatic cancer growth and NLRP3 inflammasomes activation were confirmed in an in vivo HepG2 tumor xenograft model. Taken together, these results demonstrate that cathepsin B signaling plays a pivotal role in leptin-induced hepatic cancer cell growth by activating NLRP3 inflammasomes.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 3","pages":"160 - 176"},"PeriodicalIF":6.7,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9238737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Anti-fibrotic effect of aurocyanide, the active metabolite of auranofin 金糠蛋白的活性代谢物金糠氰的抗纤维化作用
IF 6.7 3区 医学
Archives of Pharmacal Research Pub Date : 2023-03-10 DOI: 10.1007/s12272-023-01438-1
Hyun Young Kim, Undarmaa Otgontenger, Jun-Woo Kim, Young Joo Lee, Sang-Bum Kim, Sung Chul Lim, Young-Mi Kim, Keon Wook Kang
{"title":"Anti-fibrotic effect of aurocyanide, the active metabolite of auranofin","authors":"Hyun Young Kim,&nbsp;Undarmaa Otgontenger,&nbsp;Jun-Woo Kim,&nbsp;Young Joo Lee,&nbsp;Sang-Bum Kim,&nbsp;Sung Chul Lim,&nbsp;Young-Mi Kim,&nbsp;Keon Wook Kang","doi":"10.1007/s12272-023-01438-1","DOIUrl":"10.1007/s12272-023-01438-1","url":null,"abstract":"<div><p>Drug repositioning has gained significant attention over the past several years. The anti-rheumatoid arthritis drug auranofin has been investigated for the treatment of other diseases, including liver fibrosis. Because auranofin is rapidly metabolized, it is necessary to identify the active metabolites of auranofin that have detectable levels in the blood and reflect its therapeutic effects. In the present study, we investigated whether aurocyanide as an active metabolite of auranofin, can be used to evaluate the anti-fibrotic effects of auranofin. Incubation of auranofin with liver microsomes showed that auranofin was susceptible to hepatic metabolism. Previously, we found that the anti-fibrotic effects of auranofin are mediated via system x<sub>c</sub><sup>–</sup>-dependent inhibition of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Therefore, we tried to identify active metabolites of auranofin based on their inhibitory effects on system x<sub>c</sub><sup>–</sup> and NLRP3 inflammasome in bone marrow-derived macrophages. Among the seven candidate metabolites, 1-thio-β-D-glycopyrano-sato-S-(triethyl-phosphine)-gold(I) and aurocyanide potently inhibited system x<sub>c</sub><sup>–</sup> and NLRP3 inflammasome. A pharmacokinetics study on mice detected significant plasma levels of aurocyanide after auranofin administration. Oral administration of aurocyanide significantly prevented thioacetamide-induced liver fibrosis in mice. Moreover, the in vitro anti-fibrotic effects of aurocyanide were assessed in LX-2 cells, where aurocyanide significantly decreased the migratory ability of the cells. In conclusion, aurocyanide is metabolically stable and detectable in plasma, and has inhibitory effects on liver fibrosis, suggesting that it is a potential marker of the therapeutic effects of auranofin.\u0000</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 3","pages":"149 - 159"},"PeriodicalIF":6.7,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01438-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9180772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信