Min Seo Lee, Hyun Joo Shim, Yong-Yeon Cho, Joo Young Lee, Han Chang Kang, Im-Sook Song, Hye Suk Lee
{"title":"Comparative metabolism of aschantin in human and animal hepatocytes","authors":"Min Seo Lee, Hyun Joo Shim, Yong-Yeon Cho, Joo Young Lee, Han Chang Kang, Im-Sook Song, Hye Suk Lee","doi":"10.1007/s12272-023-01483-w","DOIUrl":"10.1007/s12272-023-01483-w","url":null,"abstract":"<div><p>Aschantin, a tetrahydrofurofuran lignan with a 1,3-benzodioxole group derived from <i>Flos Magnoliae</i>, exhibits antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. This study compared the metabolic profiles of aschantin in human, dog, mouse, and rat hepatocytes using liquid chromatography–high-resolution mass spectrometry. The hepatic extraction ratio of aschantin among the four species was 0.46–0.77, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. Hepatocyte incubation of aschantin produced 4 phase 1 metabolites, including aschantin catechol (M1), <i>O</i>-desmethylaschantin (M2 and M3), and hydroxyaschantin (M4), and 14 phase 2 metabolites, including <i>O</i>-methyl-M1 (M5 and M6) via catechol <i>O</i>-methyltransferase (COMT), six glucuronides of M1, M2, M3, M5, and M6, and six sulfates of M1, M2, M3, M5, and M6. Enzyme kinetic studies using aschantin revealed that the production of M1, a major metabolite, via <i>O</i>-demethylenation is catalyzed by cytochrome 2C8 (CYP2C8), CYP2C9, CYP2C19, CYP3A4, and CYP3A5 enzymes; the formation of M2 (<i>O</i>-desmethylaschantin) is catalyzed by CYP2C9 and CYP2C19; and the formation of M4 is catalyzed by CYP3A4 enzyme. Two glutathione (GSH) conjugates of M1 were identified after incubation of aschantin with human and animal liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and GSH, but they were not detected in the hepatocytes of all species. In conclusion, aschantin is extensively metabolized, producing 18 metabolites in human and animal hepatocytes catalyzed by CYP, COMT, UDP-glucuronosyltransferase, and sulfotransferase. These results can help in clarifying the involvement of metabolizing enzymes in the pharmacokinetics and drug interactions of aschantin and in elucidating GSH conjugation associated with the reactive intermediate formed from M1 (aschantin catechol).</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 2","pages":"111 - 126"},"PeriodicalIF":6.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism","authors":"Chang-Keun Cho, Ju Yeon Mo, Eunvin Ko, Pureum Kang, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Jung-Woo Bae, Chang-Ik Choi","doi":"10.1007/s12272-023-01476-9","DOIUrl":"10.1007/s12272-023-01476-9","url":null,"abstract":"<div><p>Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (<i>SLCO1B1</i>) gene, which is a polymorphic gene that encodes OATP1B1. <i>SLCO1B1</i> genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to <i>SLCO1B1</i> genetic polymorphism. PK-Sim<sup>®</sup> version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration–time profiles in different <i>SLCO1B1</i> diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration–time profiles were visually similar to the observed profiles in the non-genotyped populations and different <i>SLCO1B1</i> diplotypes. All fold error values for AUC and C<sub>max</sub> were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different <i>SLCO1B1</i> diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and <i>SLCO1B1</i> diplotypes.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 2","pages":"95 - 110"},"PeriodicalIF":6.9,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139068232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions","authors":"Shivangi Kumari, Sonam Raj, M. Arockia Babu, Gurjit Kaur Bhatti, Jasvinder Singh Bhatti","doi":"10.1007/s12272-023-01479-6","DOIUrl":"10.1007/s12272-023-01479-6","url":null,"abstract":"<div><p>The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients’ molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"40 - 65"},"PeriodicalIF":6.9,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PBPK modeling to predict the pharmacokinetics of pantoprazole in different CYP2C19 genotypes","authors":"Chang-Keun Cho, Eunvin Ko, Ju Yeon Mo, Pureum Kang, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Jung-Woo Bae, Chang-Ik Choi","doi":"10.1007/s12272-023-01478-7","DOIUrl":"10.1007/s12272-023-01478-7","url":null,"abstract":"<div><p>Pantoprazole is used to treat gastroesophageal reflux disease (GERD), maintain healing of erosive esophagitis (EE), and control symptoms related to Zollinger–Ellison syndrome (ZES). Pantoprazole is mainly metabolized by cytochrome P450 (CYP) 2C19, converting to 4′-demethyl pantoprazole. CYP2C19 is a genetically polymorphic enzyme, and the genetic polymorphism affects the pharmacokinetics and/or pharmacodynamics of pantoprazole. In this study, we aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of pantoprazole in populations with various CYP2C19 metabolic activities. A comprehensive investigation of previous reports and drug databases was conducted to collect the clinical pharmacogenomic data, physicochemical data, and disposition properties of pantoprazole, and the collected data were used for model establishment. The model was evaluated by comparing the predicted plasma concentration–time profiles and/or pharmacokinetic parameters (AUC and C<sub>max</sub>) with the clinical observation results. The predicted plasma concentration–time profiles in different CYP2C19 phenotypes properly captured the observed profiles. All fold error values for AUC and C<sub>max</sub> were included in the two-fold range. Consequently, the minimal PBPK model for pantoprazole related to <i>CYP2C19</i> genetic polymorphism was properly established and it can predict the pharmacokinetics of pantoprazole in different CYP2C19 phenotypes. The present model can broaden the insight into the individualized pharmacotherapy for pantoprazole. </p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"82 - 94"},"PeriodicalIF":6.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jae Hyun Jun, Jun-Sik Kim, Leon F. Palomera, Dong-Gyu Jo
{"title":"Dysregulation of histone deacetylases in ocular diseases","authors":"Jae Hyun Jun, Jun-Sik Kim, Leon F. Palomera, Dong-Gyu Jo","doi":"10.1007/s12272-023-01482-x","DOIUrl":"10.1007/s12272-023-01482-x","url":null,"abstract":"<div><p>Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"20 - 39"},"PeriodicalIF":6.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maryam Dolatshahi, Ahmad Reza Bahrami, Qaiser Iftikhar Sheikh, Mohsen Ghanbari, Maryam M. Matin
{"title":"Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles","authors":"Maryam Dolatshahi, Ahmad Reza Bahrami, Qaiser Iftikhar Sheikh, Mohsen Ghanbari, Maryam M. Matin","doi":"10.1007/s12272-023-01477-8","DOIUrl":"10.1007/s12272-023-01477-8","url":null,"abstract":"<div><p>Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell–cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"1 - 19"},"PeriodicalIF":6.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pratikshya Shrestha, Garam Kim, Hyelim Kang, Poshan Yugal Bhattarai, Hong Seok Choi
{"title":"The PIN1-YTHDF1 axis promotes breast tumorigenesis via the m6A-dependent stabilization of AURKA mRNA","authors":"Pratikshya Shrestha, Garam Kim, Hyelim Kang, Poshan Yugal Bhattarai, Hong Seok Choi","doi":"10.1007/s12272-023-01480-z","DOIUrl":"10.1007/s12272-023-01480-z","url":null,"abstract":"<div><p>The post-transcriptional processing of <i>N</i><sup>6</sup>-methyladenosine (m<sup>6</sup>A)-modified mRNA by YTH domain-containing family protein 1 (YTHDF1) plays a crucial role in the regulation of gene expression. Although YTHDF1 expression is frequently upregulated in breast cancer, the regulatory mechanisms for this remain unclear. In this study, we examined the role of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in regulating YTHDF1 stability in breast cancer cells. The WW domain of PIN1 interacted with YTHDF1 in a phosphorylation-dependent manner. Additionally, PIN1 overexpression increased YTHDF1 stability by preventing ubiquitin-dependent proteasomal degradation. Furthermore, using the MS2-tagged RNA pull-down assay, we identified Aurora kinase A (<i>AURKA</i>) mRNA as a bona fide substrate of YTHDF1. PIN1-mediated YTHDF1 stabilization increased the stability of <i>AURKA</i> mRNA in an m<sup>6</sup>A-dependent manner. Furthermore, YTHDF1 knockout reduced AURKA protein expression levels, resulting in anticancer effects in breast cancer cells, including decreased cell proliferation, cell cycle arrest at the G0/G1 phase, apoptotic cell death, and decreased spheroid formation. The anticancer effects induced by YTHDF1 knockout were reversed by AURKA overexpression. Similarly, the knockout of PIN1 produced comparable anticancer effects to those observed in YTHDF1-knockout cells, and these effects were reversed upon overexpression of YTHDF1. In conclusion, the findings of our study suggest that increased YTHDF1 stability induced by PIN1 promotes breast tumorigenesis via the stabilization of <i>AURKA</i> mRNA. Targeting the PIN1/YTHDF1 axis may represent a novel therapeutic strategy for breast cancer.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"66 - 81"},"PeriodicalIF":6.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date","authors":"Meng Yan, Hao Wang, Rui Wei, Wenwen Li","doi":"10.1007/s12272-023-01481-y","DOIUrl":"10.1007/s12272-023-01481-y","url":null,"abstract":"<div><p>Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 3","pages":"249 - 271"},"PeriodicalIF":6.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes","authors":"Chang-Keun Cho, Pureum Kang, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Chang-Ik Choi","doi":"10.1007/s12272-023-01472-z","DOIUrl":"10.1007/s12272-023-01472-z","url":null,"abstract":"<div><p>Irbesartan, a potent and selective angiotensin II type-1 (AT<sub>1</sub>) receptor blocker (ARB), is one of the representative medications for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of irbesartan in different <i>CYP2C9</i> genotypes. The irbesartan PBPK model was established using the PK-Sim<sup>®</sup> software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the development of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling software, or optimized to fit the observed plasma concentration–time profiles. Model evaluation was performed by comparing the predicted plasma concentration–time profiles and pharmacokinetic parameters to the observed results. Predicted plasma concentration–time profiles were visually similar to observed profiles. Predicted AUC<sub>inf</sub> in <i>CYP2C9*1/*3</i> and <i>CYP2C9*1/*13</i> genotypes were increased by 1.54- and 1.62-fold compared to <i>CYP2C9*1/*1</i> genotype, respectively. All fold error values for AUC and C<sub>max</sub> in non-genotyped and <i>CYP2C9</i> genotyped models were within the two-fold error criterion. We properly established the PBPK model of irbesartan in different <i>CYP2C9</i> genotypes. It can be used to predict the pharmacokinetics of irbesartan for personalized pharmacotherapy in individuals of various races, ages, and <i>CYP2C9</i> genotypes.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 11-12","pages":"939 - 953"},"PeriodicalIF":6.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138556746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phytochemistry and pharmacology of plants in the genus Chaenomeles","authors":"Ruoling Xu, Mengting Kuang, Ning Li","doi":"10.1007/s12272-023-01475-w","DOIUrl":"10.1007/s12272-023-01475-w","url":null,"abstract":"<div><p><i>Chaenomeles</i> plants belong to the <i>Rosaceae</i> family and include five species, <i>Chaenomeles speciosa</i> (Sweet) Nakai, <i>Chaenomeles sinensis</i> (Thouin) Koehne, <i>Chaenomeles japonica</i> (Thunb.) Lindl, <i>Chaenomeles cathayensis</i> (Hemsl.) Schneid and <i>Chaenomeles thibetica</i> Yu. <i>Chaenomeles</i> plants are found and cultivated in nearly every country worldwide. China serves as both the origin and distribution hub for the plants in the <i>Chaenomeles</i> genus, and all <i>Chaenomeles</i> species except for <i>C. japonica</i> are indigenous to China. <i>Chaenomeles</i> spp. is a type of edible medicinal plant that has been traditionally used in China to treat various ailments, such as rheumatism, cholera, dysentery, enteritis, beriberi, and scurvy. A variety of chemical constituents have been extracted from this genus, including terpenoids, phenolics, flavonoids, phenylpropanoids and their derivatives, benzoic acid derivatives, biphenyls, oxylipins, and alkaloids. The biological activity of some of these constituents has already been evaluated. Pharmacological investigations have demonstrated that the plants in the genus <i>Chaenomeles</i> exhibit anti-inflammatory, analgesic, antioxidant, antihyperglycemic, antihyperlipidemic, gastrointestinal protective, antitumor, immunomodulatory, antibacterial, antiviral, hepatoprotective, neuroprotective and other pharmacological activities. The objective of this review is to provide a comprehensive and up-to-date summary of the available information on the genus <i>Chaenomeles</i> to serve as a valuable reference for further investigations.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 11-12","pages":"825 - 854"},"PeriodicalIF":6.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138556973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}