Archives of Pharmacal Research最新文献

筛选
英文 中文
Comparative metabolism of aschantin in human and animal hepatocytes 人类和动物肝细胞中aschantin的代谢比较。
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2024-01-05 DOI: 10.1007/s12272-023-01483-w
Min Seo Lee, Hyun Joo Shim, Yong-Yeon Cho, Joo Young Lee, Han Chang Kang, Im-Sook Song, Hye Suk Lee
{"title":"Comparative metabolism of aschantin in human and animal hepatocytes","authors":"Min Seo Lee,&nbsp;Hyun Joo Shim,&nbsp;Yong-Yeon Cho,&nbsp;Joo Young Lee,&nbsp;Han Chang Kang,&nbsp;Im-Sook Song,&nbsp;Hye Suk Lee","doi":"10.1007/s12272-023-01483-w","DOIUrl":"10.1007/s12272-023-01483-w","url":null,"abstract":"<div><p>Aschantin, a tetrahydrofurofuran lignan with a 1,3-benzodioxole group derived from <i>Flos Magnoliae</i>, exhibits antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. This study compared the metabolic profiles of aschantin in human, dog, mouse, and rat hepatocytes using liquid chromatography–high-resolution mass spectrometry. The hepatic extraction ratio of aschantin among the four species was 0.46–0.77, suggesting that it undergoes a moderate-to-extensive degree of hepatic metabolism. Hepatocyte incubation of aschantin produced 4 phase 1 metabolites, including aschantin catechol (M1), <i>O</i>-desmethylaschantin (M2 and M3), and hydroxyaschantin (M4), and 14 phase 2 metabolites, including <i>O</i>-methyl-M1 (M5 and M6) via catechol <i>O</i>-methyltransferase (COMT), six glucuronides of M1, M2, M3, M5, and M6, and six sulfates of M1, M2, M3, M5, and M6. Enzyme kinetic studies using aschantin revealed that the production of M1, a major metabolite, via <i>O</i>-demethylenation is catalyzed by cytochrome 2C8 (CYP2C8), CYP2C9, CYP2C19, CYP3A4, and CYP3A5 enzymes; the formation of M2 (<i>O</i>-desmethylaschantin) is catalyzed by CYP2C9 and CYP2C19; and the formation of M4 is catalyzed by CYP3A4 enzyme. Two glutathione (GSH) conjugates of M1 were identified after incubation of aschantin with human and animal liver microsomes in the presence of nicotinamide adenine dinucleotide phosphate and GSH, but they were not detected in the hepatocytes of all species. In conclusion, aschantin is extensively metabolized, producing 18 metabolites in human and animal hepatocytes catalyzed by CYP, COMT, UDP-glucuronosyltransferase, and sulfotransferase. These results can help in clarifying the involvement of metabolizing enzymes in the pharmacokinetics and drug interactions of aschantin and in elucidating GSH conjugation associated with the reactive intermediate formed from M1 (aschantin catechol).</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 2","pages":"111 - 126"},"PeriodicalIF":6.9,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139105711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism 基于生理学的匹伐他汀药代动力学(PBPK)模型与 SLCO1B1 基因多态性的关系
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-30 DOI: 10.1007/s12272-023-01476-9
Chang-Keun Cho, Ju Yeon Mo, Eunvin Ko, Pureum Kang, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Jung-Woo Bae, Chang-Ik Choi
{"title":"Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism","authors":"Chang-Keun Cho,&nbsp;Ju Yeon Mo,&nbsp;Eunvin Ko,&nbsp;Pureum Kang,&nbsp;Choon-Gon Jang,&nbsp;Seok-Yong Lee,&nbsp;Yun Jeong Lee,&nbsp;Jung-Woo Bae,&nbsp;Chang-Ik Choi","doi":"10.1007/s12272-023-01476-9","DOIUrl":"10.1007/s12272-023-01476-9","url":null,"abstract":"<div><p>Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (<i>SLCO1B1</i>) gene, which is a polymorphic gene that encodes OATP1B1. <i>SLCO1B1</i> genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to <i>SLCO1B1</i> genetic polymorphism. PK-Sim<sup>®</sup> version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration–time profiles in different <i>SLCO1B1</i> diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration–time profiles were visually similar to the observed profiles in the non-genotyped populations and different <i>SLCO1B1</i> diplotypes. All fold error values for AUC and C<sub>max</sub> were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different <i>SLCO1B1</i> diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and <i>SLCO1B1</i> diplotypes.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 2","pages":"95 - 110"},"PeriodicalIF":6.9,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139068232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions 癌症治疗中的抗体-药物共轭物:创新、挑战和未来方向。
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-28 DOI: 10.1007/s12272-023-01479-6
Shivangi Kumari, Sonam Raj, M. Arockia Babu, Gurjit Kaur Bhatti, Jasvinder Singh Bhatti
{"title":"Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions","authors":"Shivangi Kumari,&nbsp;Sonam Raj,&nbsp;M. Arockia Babu,&nbsp;Gurjit Kaur Bhatti,&nbsp;Jasvinder Singh Bhatti","doi":"10.1007/s12272-023-01479-6","DOIUrl":"10.1007/s12272-023-01479-6","url":null,"abstract":"<div><p>The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients’ molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"40 - 65"},"PeriodicalIF":6.9,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PBPK modeling to predict the pharmacokinetics of pantoprazole in different CYP2C19 genotypes 通过 PBPK 模型预测不同 CYP2C19 基因型的泮托拉唑的药代动力学。
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-27 DOI: 10.1007/s12272-023-01478-7
Chang-Keun Cho, Eunvin Ko, Ju Yeon Mo, Pureum Kang, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Jung-Woo Bae, Chang-Ik Choi
{"title":"PBPK modeling to predict the pharmacokinetics of pantoprazole in different CYP2C19 genotypes","authors":"Chang-Keun Cho,&nbsp;Eunvin Ko,&nbsp;Ju Yeon Mo,&nbsp;Pureum Kang,&nbsp;Choon-Gon Jang,&nbsp;Seok-Yong Lee,&nbsp;Yun Jeong Lee,&nbsp;Jung-Woo Bae,&nbsp;Chang-Ik Choi","doi":"10.1007/s12272-023-01478-7","DOIUrl":"10.1007/s12272-023-01478-7","url":null,"abstract":"<div><p>Pantoprazole is used to treat gastroesophageal reflux disease (GERD), maintain healing of erosive esophagitis (EE), and control symptoms related to Zollinger–Ellison syndrome (ZES). Pantoprazole is mainly metabolized by cytochrome P450 (CYP) 2C19, converting to 4′-demethyl pantoprazole. CYP2C19 is a genetically polymorphic enzyme, and the genetic polymorphism affects the pharmacokinetics and/or pharmacodynamics of pantoprazole. In this study, we aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of pantoprazole in populations with various CYP2C19 metabolic activities. A comprehensive investigation of previous reports and drug databases was conducted to collect the clinical pharmacogenomic data, physicochemical data, and disposition properties of pantoprazole, and the collected data were used for model establishment. The model was evaluated by comparing the predicted plasma concentration–time profiles and/or pharmacokinetic parameters (AUC and C<sub>max</sub>) with the clinical observation results. The predicted plasma concentration–time profiles in different CYP2C19 phenotypes properly captured the observed profiles. All fold error values for AUC and C<sub>max</sub> were included in the two-fold range. Consequently, the minimal PBPK model for pantoprazole related to <i>CYP2C19</i> genetic polymorphism was properly established and it can predict the pharmacokinetics of pantoprazole in different CYP2C19 phenotypes. The present model can broaden the insight into the individualized pharmacotherapy for pantoprazole. </p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"82 - 94"},"PeriodicalIF":6.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysregulation of histone deacetylases in ocular diseases 眼部疾病中组蛋白去乙酰化酶的失调。
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-27 DOI: 10.1007/s12272-023-01482-x
Jae Hyun Jun, Jun-Sik Kim, Leon F. Palomera, Dong-Gyu Jo
{"title":"Dysregulation of histone deacetylases in ocular diseases","authors":"Jae Hyun Jun,&nbsp;Jun-Sik Kim,&nbsp;Leon F. Palomera,&nbsp;Dong-Gyu Jo","doi":"10.1007/s12272-023-01482-x","DOIUrl":"10.1007/s12272-023-01482-x","url":null,"abstract":"<div><p>Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"20 - 39"},"PeriodicalIF":6.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles 胃癌与间充质干细胞衍生的外泌体:从促肿瘤作用到抗癌载体
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-27 DOI: 10.1007/s12272-023-01477-8
Maryam Dolatshahi, Ahmad Reza Bahrami, Qaiser Iftikhar Sheikh, Mohsen Ghanbari, Maryam M. Matin
{"title":"Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles","authors":"Maryam Dolatshahi,&nbsp;Ahmad Reza Bahrami,&nbsp;Qaiser Iftikhar Sheikh,&nbsp;Mohsen Ghanbari,&nbsp;Maryam M. Matin","doi":"10.1007/s12272-023-01477-8","DOIUrl":"10.1007/s12272-023-01477-8","url":null,"abstract":"<div><p>Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell–cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"1 - 19"},"PeriodicalIF":6.9,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139048247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PIN1-YTHDF1 axis promotes breast tumorigenesis via the m6A-dependent stabilization of AURKA mRNA PIN1-YTHDF1 轴通过 m6A 依赖性稳定 AURKA mRNA 促进乳腺肿瘤发生。
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-26 DOI: 10.1007/s12272-023-01480-z
Pratikshya Shrestha, Garam Kim, Hyelim Kang, Poshan Yugal Bhattarai, Hong Seok Choi
{"title":"The PIN1-YTHDF1 axis promotes breast tumorigenesis via the m6A-dependent stabilization of AURKA mRNA","authors":"Pratikshya Shrestha,&nbsp;Garam Kim,&nbsp;Hyelim Kang,&nbsp;Poshan Yugal Bhattarai,&nbsp;Hong Seok Choi","doi":"10.1007/s12272-023-01480-z","DOIUrl":"10.1007/s12272-023-01480-z","url":null,"abstract":"<div><p>The post-transcriptional processing of <i>N</i><sup>6</sup>-methyladenosine (m<sup>6</sup>A)-modified mRNA by YTH domain-containing family protein 1 (YTHDF1) plays a crucial role in the regulation of gene expression. Although YTHDF1 expression is frequently upregulated in breast cancer, the regulatory mechanisms for this remain unclear. In this study, we examined the role of peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) in regulating YTHDF1 stability in breast cancer cells. The WW domain of PIN1 interacted with YTHDF1 in a phosphorylation-dependent manner. Additionally, PIN1 overexpression increased YTHDF1 stability by preventing ubiquitin-dependent proteasomal degradation. Furthermore, using the MS2-tagged RNA pull-down assay, we identified Aurora kinase A (<i>AURKA</i>) mRNA as a bona fide substrate of YTHDF1. PIN1-mediated YTHDF1 stabilization increased the stability of <i>AURKA</i> mRNA in an m<sup>6</sup>A-dependent manner. Furthermore, YTHDF1 knockout reduced AURKA protein expression levels, resulting in anticancer effects in breast cancer cells, including decreased cell proliferation, cell cycle arrest at the G0/G1 phase, apoptotic cell death, and decreased spheroid formation. The anticancer effects induced by YTHDF1 knockout were reversed by AURKA overexpression. Similarly, the knockout of PIN1 produced comparable anticancer effects to those observed in YTHDF1-knockout cells, and these effects were reversed upon overexpression of YTHDF1. In conclusion, the findings of our study suggest that increased YTHDF1 stability induced by PIN1 promotes breast tumorigenesis via the stabilization of <i>AURKA</i> mRNA. Targeting the PIN1/YTHDF1 axis may represent a novel therapeutic strategy for breast cancer.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 1","pages":"66 - 81"},"PeriodicalIF":6.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date 三氧化二砷:迄今为止的应用、作用机制、毒性和救治策略。
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-26 DOI: 10.1007/s12272-023-01481-y
Meng Yan, Hao Wang, Rui Wei, Wenwen Li
{"title":"Arsenic trioxide: applications, mechanisms of action, toxicity and rescue strategies to date","authors":"Meng Yan,&nbsp;Hao Wang,&nbsp;Rui Wei,&nbsp;Wenwen Li","doi":"10.1007/s12272-023-01481-y","DOIUrl":"10.1007/s12272-023-01481-y","url":null,"abstract":"<div><p>Arsenical medicine has obtained its status in traditional Chinese medicine for more than 2,000 years. In the 1970s, arsenic trioxide was identified to have high efficacy and potency for the treatment of acute promyelocytic leukemia, which promoted many studies on the therapeutic effects of arsenic trioxide. Currently, arsenic trioxide is widely used to treat acute promyelocytic leukemia and various solid tumors through various mechanisms of action in clinical practice; however, it is accompanied by a series of adverse reactions, especially cardiac toxicity. This review presents a comprehensive overview of arsenic trioxide from preclinical and clinical efficacy, potential mechanisms of action, toxicities, and rescue strategies for toxicities to provide guidance or assistance for the clinical application of arsenic trioxide.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"47 3","pages":"249 - 271"},"PeriodicalIF":6.9,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes 基于生理学的药代动力学(PBPK)模型预测不同 CYP2C9 基因型的厄贝沙坦药代动力学
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-08 DOI: 10.1007/s12272-023-01472-z
Chang-Keun Cho, Pureum Kang, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Chang-Ik Choi
{"title":"Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes","authors":"Chang-Keun Cho,&nbsp;Pureum Kang,&nbsp;Choon-Gon Jang,&nbsp;Seok-Yong Lee,&nbsp;Yun Jeong Lee,&nbsp;Chang-Ik Choi","doi":"10.1007/s12272-023-01472-z","DOIUrl":"10.1007/s12272-023-01472-z","url":null,"abstract":"<div><p>Irbesartan, a potent and selective angiotensin II type-1 (AT<sub>1</sub>) receptor blocker (ARB), is one of the representative medications for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of irbesartan in different <i>CYP2C9</i> genotypes. The irbesartan PBPK model was established using the PK-Sim<sup>®</sup> software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the development of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling software, or optimized to fit the observed plasma concentration–time profiles. Model evaluation was performed by comparing the predicted plasma concentration–time profiles and pharmacokinetic parameters to the observed results. Predicted plasma concentration–time profiles were visually similar to observed profiles. Predicted AUC<sub>inf</sub> in <i>CYP2C9*1/*3</i> and <i>CYP2C9*1/*13</i> genotypes were increased by 1.54- and 1.62-fold compared to <i>CYP2C9*1/*1</i> genotype, respectively. All fold error values for AUC and C<sub>max</sub> in non-genotyped and <i>CYP2C9</i> genotyped models were within the two-fold error criterion. We properly established the PBPK model of irbesartan in different <i>CYP2C9</i> genotypes. It can be used to predict the pharmacokinetics of irbesartan for personalized pharmacotherapy in individuals of various races, ages, and <i>CYP2C9</i> genotypes.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 11-12","pages":"939 - 953"},"PeriodicalIF":6.9,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138556746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytochemistry and pharmacology of plants in the genus Chaenomeles Chaenomeles属植物的植物化学和药理学
IF 6.9 3区 医学
Archives of Pharmacal Research Pub Date : 2023-12-07 DOI: 10.1007/s12272-023-01475-w
Ruoling Xu, Mengting Kuang, Ning Li
{"title":"Phytochemistry and pharmacology of plants in the genus Chaenomeles","authors":"Ruoling Xu,&nbsp;Mengting Kuang,&nbsp;Ning Li","doi":"10.1007/s12272-023-01475-w","DOIUrl":"10.1007/s12272-023-01475-w","url":null,"abstract":"<div><p><i>Chaenomeles</i> plants belong to the <i>Rosaceae</i> family and include five species, <i>Chaenomeles speciosa</i> (Sweet) Nakai, <i>Chaenomeles sinensis</i> (Thouin) Koehne, <i>Chaenomeles japonica</i> (Thunb.) Lindl, <i>Chaenomeles cathayensis</i> (Hemsl.) Schneid and <i>Chaenomeles thibetica</i> Yu. <i>Chaenomeles</i> plants are found and cultivated in nearly every country worldwide. China serves as both the origin and distribution hub for the plants in the <i>Chaenomeles</i> genus, and all <i>Chaenomeles</i> species except for <i>C. japonica</i> are indigenous to China. <i>Chaenomeles</i> spp. is a type of edible medicinal plant that has been traditionally used in China to treat various ailments, such as rheumatism, cholera, dysentery, enteritis, beriberi, and scurvy. A variety of chemical constituents have been extracted from this genus, including terpenoids, phenolics, flavonoids, phenylpropanoids and their derivatives, benzoic acid derivatives, biphenyls, oxylipins, and alkaloids. The biological activity of some of these constituents has already been evaluated. Pharmacological investigations have demonstrated that the plants in the genus <i>Chaenomeles</i> exhibit anti-inflammatory, analgesic, antioxidant, antihyperglycemic, antihyperlipidemic, gastrointestinal protective, antitumor, immunomodulatory, antibacterial, antiviral, hepatoprotective, neuroprotective and other pharmacological activities. The objective of this review is to provide a comprehensive and up-to-date summary of the available information on the genus <i>Chaenomeles</i> to serve as a valuable reference for further investigations.</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 11-12","pages":"825 - 854"},"PeriodicalIF":6.9,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138556973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信