{"title":"Change Meat Resistance: Systematic Literature Review on Consumer Resistance to the Alternative Protein Transition.","authors":"M C Onwezen, G Nassar, J A Bouma","doi":"10.1146/annurev-food-111523-121744","DOIUrl":"https://doi.org/10.1146/annurev-food-111523-121744","url":null,"abstract":"<p><p>Consumer resistance significantly impedes the transition from animal-derived proteins to alternative protein sources through a dual mechanism: consumer reluctance to change entrenched meat-eating habits and hesitation among policymakers, marketers, and practitioners due to anticipated resistance. The concept of resistance is intricate and viewed diversely across research disciplines. We conducted an extensive systematic literature review supplemented by an artificial intelligence-based approach. We evaluated 3,387 studies to identify 51 key papers. The results reveal that resistance is under-researched. Resistance to plant-based diets is associated with practical barriers, whereas resistance to reducing meat consumption is tied more to moral and social aspects. Resistance predominantly manifests among unmotivated meat lovers with strong meat-eating habits. On a positive note, resistance reflects consumer concerns, tends to diminish over time, is overrated, and is specifically linked to specific consumer groups. Thus, addressing resistance is vital, as it facilitates the transition to a more sustainable and healthy food supply that relies less on animal proteins.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142869299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberta R Holt, Harold H Schmitz, Reham Mhawish, Slavko Komarnytsky, Thien Nguyen, Patrick M Caveney, John P Munafo
{"title":"Comfort Foods in the Twenty-First Century: Friend or Foe?","authors":"Roberta R Holt, Harold H Schmitz, Reham Mhawish, Slavko Komarnytsky, Thien Nguyen, Patrick M Caveney, John P Munafo","doi":"10.1146/annurev-food-111523-122109","DOIUrl":"https://doi.org/10.1146/annurev-food-111523-122109","url":null,"abstract":"<p><p>The comfort food (CF) concept emerged during the latter half of the twentieth century. Although not well defined, CF can be described as familiar foods that elicit feelings of well-being and play a role in social interactions and psychological health. These foods are often calorically dense and nutrient-poor, and overconsumption of some CF may contribute to negative metabolic health outcomes. This is particularly relevant when considering the global increase in obesity, leading to the development of therapeutics for improved weight control and metabolic health. In this review, we aim to (<i>a</i>) provide a historical perspective of the CF concept, (<i>b</i>) detail some genetic, developmental, and cultural factors that determine food preference, (<i>c</i>) discuss the influence of diet on the gut-brain connection, hormones, nutrient absorption, and microbiome diversity, and (<i>d</i>) provide a perspective detailing possible future directions in which food technology may enable a new generation of CF with enhanced palatability and nutrient profiles while contributing to well-being and environmental sustainability.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decarbonizing the Food System with Microbes and Carbon-Neutral Feedstocks.","authors":"Niaz Mahmud, Kayode J Taiwo, Joseph G Usack","doi":"10.1146/annurev-food-111523-121717","DOIUrl":"https://doi.org/10.1146/annurev-food-111523-121717","url":null,"abstract":"<p><p>Harnessing CO<sub>2</sub> and CO<sub>2</sub>-derived C1-C2 compounds for microbial food production can mitigate greenhouse gas emissions and boost sustainability within the food sector. These innovative technologies support carbon neutrality by generating nutrient-rich edible microbial biomass and biocompounds using autotrophic and heterotrophic microbes. However, qualifying microbial food viability and future impacts in the food sector remains challenging due to their diversity, technical complexity, socioeconomic forces, and incipient markets. This review provides an overview of microbial food systems and then delves into the technical interplay among feedstocks, microbes, carbon fixation platforms, bioreactor operations, and downstream processes. The review further explores developing markets for microbial food products, the industrial landscape, economic drivers, and emerging trends in next-generation food products. The analysis suggests a transformative shift in the food industry is underway, yet significant challenges persist, such as securing cost-effective feedstocks, improving downstream processing efficiency, and gaining consumer acceptance. These challenges require innovative solutions and collaborative efforts to ensure the future commercial success of microbial foods-doing so will create myriad opportunities to transform and decarbonize our food system.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mycoprotein: A Healthy and Sustainable Source of Alternative Protein-Based Foods.","authors":"T J A Finnigan, H E Theobald, B Bajka","doi":"10.1146/annurev-food-111523-121802","DOIUrl":"https://doi.org/10.1146/annurev-food-111523-121802","url":null,"abstract":"<p><p>Perhaps the most important challenge currently facing agrifood is how to ensure a more sustainable food system by changing the way we eat. Fermentation of fungi to produce mycoprotein can address this imperative by utilizing an age-old technology and a largely untapped natural resource. In this review, we look at the origins of mycoprotein, fermentation at scale, and downstream applications of mycoprotein as food. We review the advances in our understanding of the underpinning science from fermentation through to food development and the evidence base of research that provides insights into the impacts of diets rich in mycoprotein on both the health of our bodies and the environment. We show that mycoprotein has a valuable and future-facing role as a healthy new protein with a low environmental impact.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Liu, Xuchuan Ma, Monica Cazzaniga, Cormac G M Gahan, Heidy M W den Besten, Tjakko Abee
{"title":"Nano in Micro: Novel Concepts in Foodborne Pathogen Transmission and Pathogenesis.","authors":"Yue Liu, Xuchuan Ma, Monica Cazzaniga, Cormac G M Gahan, Heidy M W den Besten, Tjakko Abee","doi":"10.1146/annurev-food-111523-121811","DOIUrl":"https://doi.org/10.1146/annurev-food-111523-121811","url":null,"abstract":"<p><p>In this article, we highlight novel components of foodborne pathogens that influence their response, physiology, adaptation, and survival in the face of diverse stresses, and consequently have implications for their transmission in the food chain and their pathogenesis. Recent insights into the role of bacteriophages/prophages, bacterial extracellular vesicles, and bacterial microcompartments, which make up the emerging field we coined as \"nano in micro,\" are presented, together with the role of understudied food-relevant substrates in pathogen fitness and virulence. These new insights also lead to reflections on generally adopted laboratory conditions in the long-standing research field of adaptive stress response in foodborne pathogens. In addition, selected examples of the impact of diet and microbiota on intestinal colonization and host invasion are discussed. A final section on risk assessment presents an overview of tools for (kinetic) data modeling and perspectives for the implementation of information derived from whole-genome sequencing, combined with advancements in dose-response models and exposure assessments.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From Processed Foods to Ultraprocessed Foods: Evolution of an Industry Model and Impact on Dietary Quality, Health, and Society.","authors":"Job Ubbink, Allen S Levine","doi":"10.1146/annurev-food-111523-122028","DOIUrl":"https://doi.org/10.1146/annurev-food-111523-122028","url":null,"abstract":"<p><p>The impact of food technology and product development on the nutritional quality of foods is discussed in the context of food classification schemes, clinical research, and sociocultural studies. Food processing operations are analyzed in terms of their beneficial and detrimental consequences for the nutritional value of foods and ingredients. Several classification schemes are discussed, including dietary guidelines, nutrition information panels, and nutritional scores. The health impact of processed and ultraprocessed foods is discussed in connection with the processing-formulation scheme previously developed by the authors. The importance of product development as a driver for the food industry is highlighted, and formulation-based approaches to improve the healthfulness of industrially produced foods are discussed. Finally, the public perception of processed foods and its impact on the industry are discussed, and the need for a broad engagement among stakeholders to ensure the sustainability of our food system and healthy diets for individuals is emphasized.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142613667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiao Jiang, Yubo Liu, Xu Si, Li Wang, Hailong Gui, Jinlong Tian, Huijun Cui, Hongzhou Jiang, Wenjiang Dong, Bin Li
{"title":"Potential of Milk-Derived Extracellular Vesicles as Carriers for Oral Delivery of Active Phytoconstituents.","authors":"Qiao Jiang, Yubo Liu, Xu Si, Li Wang, Hailong Gui, Jinlong Tian, Huijun Cui, Hongzhou Jiang, Wenjiang Dong, Bin Li","doi":"10.1146/annurev-food-072023-034354","DOIUrl":"10.1146/annurev-food-072023-034354","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) play a crucial role in intercellular communication and have the potential to serve as in vivo carriers for delivering active molecules. The biocompatibility advantages of EVs over artificial nanocarriers create new frontiers for delivering modern active molecules. Milk is a favorable source of EVs because of its high bioavailability, low immunogenicity, and commercial producibility. In this review, we analyzed the advantages of milk-derived EVs in the oral delivery of active molecules, discussed their research progress in delivering active phytoconstituents, and summarized the necessary technologies and critical unit operations required for the development of an oral delivery system based on EVs. The review aims to provide innovative ideas and fundamental quality control guidelines for developing the next-generation oral drug delivery system based on milk-derived EVs.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"431-454"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elderberry, an Ancient Remedy: A Comprehensive Study of the Bioactive Compounds in Three <i>Sambucus nigra</i> L. Subspecies.","authors":"Katherine Uhl, Alyson E Mitchell","doi":"10.1146/annurev-food-072023-034423","DOIUrl":"10.1146/annurev-food-072023-034423","url":null,"abstract":"<p><p>Elderberry, the fruit of <i>Sambucus nigra</i>, has become a popular inclusion in foods, beverages, supplements, and more in recent years. Although the European subspecies, <i>S</i>. <i>nigra</i> ssp. <i>nigra</i>, has been widely studied for its composition, particularly for phenolic and volatile profiles, other subspecies, such as the American elderberry <i>S</i>. <i>nigra</i> ssp. <i>canadensis</i> and the blue elderberry <i>S</i>. <i>nigra</i> ssp. <i>cerulea</i>, have also become contenders in the elderberry supply chain. For the first time, the composition (including micronutrients, macronutrients, organic acids, titratable acid, soluble solids, phenolic compounds, and cyanogenic glycosides) of these three subspecies of elderberry is compared, highlighting the unique qualities of each subspecies and identifying gaps in the available data on the three subspecies.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"27-51"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N Stephanie Kawecki, Kathleen K Chen, Corinne S Smith, Qingwen Xie, Julian M Cohen, Amy C Rowat
{"title":"Scalable Processes for Culturing Meat Using Edible Scaffolds.","authors":"N Stephanie Kawecki, Kathleen K Chen, Corinne S Smith, Qingwen Xie, Julian M Cohen, Amy C Rowat","doi":"10.1146/annurev-food-072023-034451","DOIUrl":"10.1146/annurev-food-072023-034451","url":null,"abstract":"<p><p>There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"241-264"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139428451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Tamayo, M Olivares, P Ruas-Madiedo, A Margolles, J C Espín, I Medina, M V Moreno-Arribas, S Canals, C R Mirasso, S Ortín, H Beltrán-Sanchez, A Palloni, F A Tomás-Barberán, Y Sanz
{"title":"How Diet and Lifestyle Can Fine-Tune Gut Microbiomes for Healthy Aging.","authors":"M Tamayo, M Olivares, P Ruas-Madiedo, A Margolles, J C Espín, I Medina, M V Moreno-Arribas, S Canals, C R Mirasso, S Ortín, H Beltrán-Sanchez, A Palloni, F A Tomás-Barberán, Y Sanz","doi":"10.1146/annurev-food-072023-034458","DOIUrl":"10.1146/annurev-food-072023-034458","url":null,"abstract":"<p><p>Many physical, social, and psychological changes occur during aging that raise the risk of developing chronic diseases, frailty, and dependency. These changes adversely affect the gut microbiota, a phenomenon known as microbe-aging. Those microbiota alterations are, in turn, associated with the development of age-related diseases. The gut microbiota is highly responsive to lifestyle and dietary changes, displaying a flexibility that also provides anactionable tool by which healthy aging can be promoted. This review covers, firstly, the main lifestyle and socioeconomic factors that modify the gut microbiota composition and function during healthy or unhealthy aging and, secondly, the advances being made in defining and promoting healthy aging, including microbiome-informed artificial intelligence tools, personalized dietary patterns, and food probiotic systems.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"15 1","pages":"283-305"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}