Precision Processing for Value-Added Fats and Oils.

IF 10.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Jochen Weiss, Sebastian Mannweiler, Hanna Salminen
{"title":"Precision Processing for Value-Added Fats and Oils.","authors":"Jochen Weiss, Sebastian Mannweiler, Hanna Salminen","doi":"10.1146/annurev-food-111523-121237","DOIUrl":null,"url":null,"abstract":"<p><p>Lipids are key compounds in foods and provide energy and nutrients to the body. They are carriers of aroma and flavor compounds and contribute to structure and texture. Nutritional research has shown that positive effects on human health are derived from the intake of specific lipids. Similarly, food science research has shown that food matrix design benefits from having tailored lipid fractions with specific functions such as melting profiles, crystal structures, and oil-binding capacities. Minor constituents such as polar lipids or waxes also have valuable functional properties such as the ability to stabilize interfaces, facilitate spreadability, provide barriers, or act as organogelators. Coupled with the emergence of new feedstocks such as new plants, microbes, or insects, this has fueled a renewed interest in designing efficient, effective, and environmentally friendly processes to extract and fractionate lipids from feedstocks. Such precision-processing approaches are intended to yield not just bulk oils and fats but also specialty lipids with tailored properties. In this review article, we discuss the extraction and fractionation approaches used to obtain lipid fractions from plants, animals, or microbial fermentation, discuss their properties and functionalities, and highlight process design approaches, with a focus on sustainable extraction technologies. Recent advances in the three main steps in obtaining food lipids are highlighted: (<i>a</i>) crude oil manufacture; (<i>b</i>) refinement; and (<i>c</i>) fractionization. Finally, two case studies of specialty ingredients derived from such precision-processing approaches are presented.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"39-61"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-111523-121237","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipids are key compounds in foods and provide energy and nutrients to the body. They are carriers of aroma and flavor compounds and contribute to structure and texture. Nutritional research has shown that positive effects on human health are derived from the intake of specific lipids. Similarly, food science research has shown that food matrix design benefits from having tailored lipid fractions with specific functions such as melting profiles, crystal structures, and oil-binding capacities. Minor constituents such as polar lipids or waxes also have valuable functional properties such as the ability to stabilize interfaces, facilitate spreadability, provide barriers, or act as organogelators. Coupled with the emergence of new feedstocks such as new plants, microbes, or insects, this has fueled a renewed interest in designing efficient, effective, and environmentally friendly processes to extract and fractionate lipids from feedstocks. Such precision-processing approaches are intended to yield not just bulk oils and fats but also specialty lipids with tailored properties. In this review article, we discuss the extraction and fractionation approaches used to obtain lipid fractions from plants, animals, or microbial fermentation, discuss their properties and functionalities, and highlight process design approaches, with a focus on sustainable extraction technologies. Recent advances in the three main steps in obtaining food lipids are highlighted: (a) crude oil manufacture; (b) refinement; and (c) fractionization. Finally, two case studies of specialty ingredients derived from such precision-processing approaches are presented.

油脂增值的精密加工。
脂质是食物中的关键化合物,为身体提供能量和营养。它们是香气和风味化合物的载体,有助于结构和质地。营养研究表明,对人体健康的积极影响来自于摄入特定的脂质。同样,食品科学研究表明,食品基质设计受益于定制具有特定功能的脂质部分,如熔化曲线、晶体结构和油结合能力。次要成分,如极性脂类或蜡类,也具有有价值的功能特性,如稳定界面、促进涂抹性、提供屏障或充当有机凝胶的能力。再加上新植物、微生物或昆虫等新原料的出现,这激发了人们对设计高效、有效和环保的工艺来从原料中提取和分离脂质的兴趣。这种精密加工方法的目的不仅是生产散装油和脂肪,而且还生产具有定制特性的特殊脂质。在这篇综述文章中,我们讨论了用于从植物、动物或微生物发酵中获得脂质馏分的提取和分离方法,讨论了它们的性质和功能,并重点介绍了工艺设计方法,重点是可持续提取技术。重点介绍了获取食品脂质的三个主要步骤的最新进展:(a)原油制造;(b)细化;(c)分馏。最后,提出了三个基于这种精密加工方法的特殊成分的案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.40
自引率
0.80%
发文量
20
审稿时长
>12 weeks
期刊介绍: Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信