食物多酚的生物利用率:知识现状。

IF 10.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Gary Williamson
{"title":"食物多酚的生物利用率:知识现状。","authors":"Gary Williamson","doi":"10.1146/annurev-food-060721-023817","DOIUrl":null,"url":null,"abstract":"<p><p>(Poly)phenols, including flavonoids, phenolic acids, and tannins, are a diverse class of compounds found in plant-based foods and beverages. Their bioavailability has been extensively described and detailed metabolic pathways elucidated. Although some parent (poly)phenols are absorbed intact in the small intestine, most pass to the colon where they are extensively catabolized and their microbial products absorbed into the circulation. The sum of the metabolites absorbed can reach almost 100% in some cases and in some individuals. In recent years, there have been three major areas of advancement: (<i>a</i>) comprehensive and systematic reviews have brought together bioavailability data, including detailed metabolic pathways in humans, and quantitative estimates of absorption and excretion; (<i>b</i>) the action and importance of the gut microbiota in (poly)phenol metabolism have been better defined and our understanding of the important role of the microbiota in intra- and interindividual variation has greatly expanded; and (<i>c</i>) strategies to improve (poly)phenol bioavailability such as encapsulation employing various nanoformulations or cyclodextrins have been developed.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"315-332"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioavailability of Food Polyphenols: Current State of Knowledge.\",\"authors\":\"Gary Williamson\",\"doi\":\"10.1146/annurev-food-060721-023817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>(Poly)phenols, including flavonoids, phenolic acids, and tannins, are a diverse class of compounds found in plant-based foods and beverages. Their bioavailability has been extensively described and detailed metabolic pathways elucidated. Although some parent (poly)phenols are absorbed intact in the small intestine, most pass to the colon where they are extensively catabolized and their microbial products absorbed into the circulation. The sum of the metabolites absorbed can reach almost 100% in some cases and in some individuals. In recent years, there have been three major areas of advancement: (<i>a</i>) comprehensive and systematic reviews have brought together bioavailability data, including detailed metabolic pathways in humans, and quantitative estimates of absorption and excretion; (<i>b</i>) the action and importance of the gut microbiota in (poly)phenol metabolism have been better defined and our understanding of the important role of the microbiota in intra- and interindividual variation has greatly expanded; and (<i>c</i>) strategies to improve (poly)phenol bioavailability such as encapsulation employing various nanoformulations or cyclodextrins have been developed.</p>\",\"PeriodicalId\":8187,\"journal\":{\"name\":\"Annual review of food science and technology\",\"volume\":\" \",\"pages\":\"315-332\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of food science and technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-food-060721-023817\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-060721-023817","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

(聚)酚,包括类黄酮、酚酸和单宁,是植物性食品和饮料中发现的多种化合物。它们的生物利用度已被广泛描述,详细的代谢途径已被阐明。虽然一些母体(多)酚在小肠中被完整地吸收,但大多数进入结肠,在那里它们被广泛地分解代谢,它们的微生物产物被吸收到循环中。在某些情况下和某些个体中,代谢产物的吸收总量几乎可以达到100%。近年来,有三个主要的进展领域:(a)全面和系统的审查汇集了生物利用度数据,包括详细的人体代谢途径,以及吸收和排泄的定量估计;(b)肠道微生物群在多酚代谢中的作用和重要性得到了更好的定义,我们对微生物群在个体内和个体间变异中的重要作用的理解得到了极大的扩展;(c)提高多酚生物利用度的策略,如采用各种纳米配方或环糊精的包封。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioavailability of Food Polyphenols: Current State of Knowledge.

(Poly)phenols, including flavonoids, phenolic acids, and tannins, are a diverse class of compounds found in plant-based foods and beverages. Their bioavailability has been extensively described and detailed metabolic pathways elucidated. Although some parent (poly)phenols are absorbed intact in the small intestine, most pass to the colon where they are extensively catabolized and their microbial products absorbed into the circulation. The sum of the metabolites absorbed can reach almost 100% in some cases and in some individuals. In recent years, there have been three major areas of advancement: (a) comprehensive and systematic reviews have brought together bioavailability data, including detailed metabolic pathways in humans, and quantitative estimates of absorption and excretion; (b) the action and importance of the gut microbiota in (poly)phenol metabolism have been better defined and our understanding of the important role of the microbiota in intra- and interindividual variation has greatly expanded; and (c) strategies to improve (poly)phenol bioavailability such as encapsulation employing various nanoformulations or cyclodextrins have been developed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.40
自引率
0.80%
发文量
20
审稿时长
>12 weeks
期刊介绍: Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信