AntibioticsPub Date : 2024-08-10DOI: 10.3390/antibiotics13080752
Felicia Galos, Mara Ioana Ionescu, Mihai Daniel Luca Mirea, Anca Andreea Boboc, Andreea Ioan, Catalin Boboc
{"title":"Trends in Upper Gastrointestinal Bleeding in Children: The Impact of Helicobacter pylori Infection and Non-Steroidal Anti-Inflammatory Drug Use","authors":"Felicia Galos, Mara Ioana Ionescu, Mihai Daniel Luca Mirea, Anca Andreea Boboc, Andreea Ioan, Catalin Boboc","doi":"10.3390/antibiotics13080752","DOIUrl":"https://doi.org/10.3390/antibiotics13080752","url":null,"abstract":"Upper gastrointestinal bleeding (UGIB) is a significant concern in children, contributing to 6–20% of cases in pediatric intensive care units. This study evaluates the roles of Helicobacter pylori (H. pylori) infection and non-steroidal anti-inflammatory drug (NSAID) usage in the etiology of UGIB in children, with a particular focus on trends observed during the COVID-19 pandemic. We conducted a retrospective analysis of 103 pediatric patients who underwent esophagogastroduodenoscopy (EGD) for UGIB between January 2015 and December 2023. Of these, 88 patients were included in the final analysis, where the source of bleeding was successfully identified. Hematemesis was the most common presentation, and the source of bleeding was identified in 85.43% of cases. The prevalence of H. pylori infection remained stable across the pre-pandemic (39.7%) and post-pandemic (36.7%) periods. However, NSAID usage increased nearly threefold during the pandemic, with 36.7% of post-pandemic UGIB cases associated with NSAID use, compared to 12.1% pre-pandemic. These findings underscore the significant roles of H. pylori and NSAID use in pediatric UGIB, with a notable increase in NSAID-related cases during the pandemic.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-10DOI: 10.3390/antibiotics13080751
Janja Sluga, Tihomir Tomašič, Marko Anderluh, Martina Hrast Rambaher, Gregor Bajc, Alen Sevšek, Nathaniel I. Martin, Roland J. Pieters, Marjana Novič, Katja Venko
{"title":"Targeting N-Acetylglucosaminidase in Staphylococcus aureus with Iminosugar Inhibitors","authors":"Janja Sluga, Tihomir Tomašič, Marko Anderluh, Martina Hrast Rambaher, Gregor Bajc, Alen Sevšek, Nathaniel I. Martin, Roland J. Pieters, Marjana Novič, Katja Venko","doi":"10.3390/antibiotics13080751","DOIUrl":"https://doi.org/10.3390/antibiotics13080751","url":null,"abstract":"Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new effective antibacterial agents is extremely important to solve the increasing problem of bacterial resistance. The bacteriolytic enzyme autolysin E (AtlE) is a promising new drug target as it plays a key role in the degradation of peptidoglycan in the bacterial cell wall. Consequently, disruption of function can have an immense impact on bacterial growth and survival. An in silico and in vitro evaluation of iminosugar derivatives as potent inhibitors of S. aureus (AtlE) was performed. Three promising hit compounds (1, 3 and 8) were identified as AtlE binders in the micromolar range as measured by surface plasmon resonance. The most potent compound among the SPR response curve hits was 1, with a KD of 19 μM. The KD value for compound 8 was 88 μM, while compound 3 had a KD value of 410 μM.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-10DOI: 10.3390/antibiotics13080750
Anna Karin Rosberg, Maria João Silva, Cecilie Skøtt Feidenhans’l, Eddie Cytryn, Edouard Jurkevitch, Rolf Lood
{"title":"Regulation of Antibiotic Resistance Genes on Agricultural Land Is Dependent on Both Choice of Organic Amendment and Prevalence of Predatory Bacteria","authors":"Anna Karin Rosberg, Maria João Silva, Cecilie Skøtt Feidenhans’l, Eddie Cytryn, Edouard Jurkevitch, Rolf Lood","doi":"10.3390/antibiotics13080750","DOIUrl":"https://doi.org/10.3390/antibiotics13080750","url":null,"abstract":"Antibiotic resistance genes (ARGs) are widespread in the environment, and soils, specifically, are hotspots for microorganisms with inherent antibiotic resistance. Manure and sludge used as fertilizers in agricultural production have been shown to contain vast amounts of ARGs, and due to continued applications, ARGs accumulate in agricultural soils. Some soils, however, harbor a resilience capacity that could depend on specific soil properties, as well as the presence of predatory bacteria that are able to hydrolyse living bacteria, including bacteria of clinical importance. The objectives of this study were to (i) investigate if the antibiotic resistance profile of the soil microbiota could be differently affected by the addition of cow manure, chicken manure, and sludge, and (ii) investigate if the amendments had an effect on the presence of predatory bacteria. The three organic amendments were mixed separately with a field soil, divided into pots, and incubated in a greenhouse for 28 days. Droplet digital PCR (ddPCR) was used to quantify three ARGs, two predatory bacteria, and total number of bacteria. In this study, we demonstrated that the choice of organic amendment significantly affected the antibiotic resistance profile of soil, and promoted the growth of predatory bacteria, while the total number of bacteria was unaffected.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-09DOI: 10.3390/antibiotics13080748
Smriti Das, Karuppannagounder Rajan Priyanka, Kolandhasamy Prabhu, Ramachandran Vinayagam, Rajendran Rajaram, Sang Gu Kang
{"title":"Anticandidal Properties of Launaea sarmentosa among the Salt Marsh Plants Collected from Palk Bay and the Gulf of Mannar Coast, Southeastern India","authors":"Smriti Das, Karuppannagounder Rajan Priyanka, Kolandhasamy Prabhu, Ramachandran Vinayagam, Rajendran Rajaram, Sang Gu Kang","doi":"10.3390/antibiotics13080748","DOIUrl":"https://doi.org/10.3390/antibiotics13080748","url":null,"abstract":"Tidal wetlands, commonly known as salt marshes, are highly productive ecosystems in temperate regions worldwide. These environments constitute a unique flora composed primarily of salt-tolerant herbs, grasses, and shrubs. This study investigated the therapeutic properties of ten salt marsh plants collected mainly from Palk Bay and Mannar Gulf against Candida disease. This study examined the changes in natural plant products associated with their anti-Candida growth activity during two distinct seasonal changes—monsoon and summer. The potential of the salt marshes to inhibit the growth of five different Candida strains was assessed using four solvents. In phytochemical analysis, the extracts obtained from a Launaea sarmentosa exhibited the highest results compared to the other plant extracts. Fourier transform infrared spectroscopy revealed 12 peaks with alkane, aldehyde, amine, aromatic ester, phenol, secondary alcohol, and 1,2,3,4-tetrasubstituted. Gas-chromatography–mass spectrometry detected 30 compounds. Cyclotetracosane, lupeol, β-amyrin, and 12-oleanen-3-yl acetate showed the highest peak range. In particular, plant samples collected during the monsoon season were more effective in preventing Canda growth than the summer plant samples. In the monsoon season, the salt marsh plant extracted with ethyl acetate showed a high anti-Candida growth activity, while in the summer, the acetone extract exhibited a higher anti-Candida growth activity than the other solvents. The hexane extract of L. sarmentosa showed the highest inhibition zone against all Candidal strains. Furthermore, compounds, such as β-amyrin, lupeol, and oxirane, from the hexane extract of L. sarmentosa play a vital role in anti-Candida activity. This paper reports the potential of tidal marsh plant extracts for developing new antifungal agents for Candida infections.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-09DOI: 10.3390/antibiotics13080747
Maja Johanne Søndergaard Knudsen, I. M. Rubin, A. Petersen
{"title":"The Effect of Antibiotics on the Eradication of Multidrug-Resistant Organisms in Intestinal Carriers—A Systematic Review with Meta-Analysis","authors":"Maja Johanne Søndergaard Knudsen, I. M. Rubin, A. Petersen","doi":"10.3390/antibiotics13080747","DOIUrl":"https://doi.org/10.3390/antibiotics13080747","url":null,"abstract":"Objectives: The aim of this systematic review was to investigate the effect of antibiotics on the eradication of multidrug-resistant organisms (MRO) in intestinal carriers. We defined multidrug-resistant organisms as vancomycin-resistant Enterococcus faecium (VREfm), and multidrug-resistant Gram-negative Enterobacterales. Methods: We searched the EMBASE, Cochrane Central, and PubMed databases from inception to medio November 2023. We included randomised and controlled clinical trials (RCTs), that investigated the effect of antibiotics on the eradication of multidrug-resistant organisms in intestinal carriers. Finally, we performed a meta-analysis. Results: We included five RTCs in the systematic review. In four studies an effect of antibiotics on the eradication of MRO was shown at the end of intervention, but it was not sustained at follow-up. In the fifth study, the effect at the end of intervention was not reported, and there was no observed effect of the intervention at follow-up. We included four studies in the meta-analysis, and it suggests an effect of antibiotics on the eradication of MRO in intestinal carriers at the end of follow-up with a p-value of 0.04 (95% confidence interval 1.02–1.95). None of the studies reported a significant increase in resistance to the study drug. Gastrointestinal disorders were the most frequent non-severe adverse event. Conclusions: The effect of antibiotics on the eradication of multidrug-resistant organisms in intestinal carriers was not statistically significant in any of the five included studies; however, we found a significant effect in the pooled meta-analysis. As the confidence interval is large, we cannot determine the clinical importance of this finding, and it should be further investigated.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"8 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-09DOI: 10.3390/antibiotics13080749
Iwona Kawacka, Agnieszka Olejnik-Schmidt
{"title":"Gene emrC Associated with Resistance to Quaternary Ammonium Compounds Is Common among Listeria monocytogenes from Meat Products and Meat Processing Plants in Poland","authors":"Iwona Kawacka, Agnieszka Olejnik-Schmidt","doi":"10.3390/antibiotics13080749","DOIUrl":"https://doi.org/10.3390/antibiotics13080749","url":null,"abstract":"(1) Background: L. monocytogenes is a food pathogen of great importance, characterized by a high mortality rate. Quaternary ammonium compounds (QACs), such as benzalkonium chloride (BC), are often used as disinfectants in food processing facilities. The effectiveness of disinfection procedures is crucial to food safety. (2) Methods: A collection of 153 isolates of L. monocytogenes from meat processing industry was analyzed for their sensitivity to BC using the agar diffusion method. Genes of interest were detected with PCR. (3) Results: Genes emrC, bcrABC, and qacH were found in 64 (41.8%), 6 (3.9%), and 1 isolate (0.7%), respectively, and 79 isolates (51.6%) were classified as having reduced sensitivity to BC. A strong correlation between carrying QACs resistance-related genes and phenotype was found (p-value < 0.0001). Among 51 isolates originating from bacon (collected over 13 months), 48 had the emrC gene, which could explain their persistent presence in a processing facility. Isolates with the ilsA gene (from LIPI-3) were significantly (p-value 0.006) less likely to carry QACs resistance-related genes. (4) Conclusions: Reduced sensitivity to QACs is common among L. monocytogenes from the meat processing industry. Persistent presence of these bacteria in a processing facility is presumably caused by emrC-induced QACs resistance.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-09DOI: 10.3390/antibiotics13080746
Paola Angelini
{"title":"Plant-Derived Antimicrobials and Their Crucial Role in Combating Antimicrobial Resistance","authors":"Paola Angelini","doi":"10.3390/antibiotics13080746","DOIUrl":"https://doi.org/10.3390/antibiotics13080746","url":null,"abstract":"Antibiotic resistance emerged shortly after the discovery of the first antibiotic and has remained a critical public health issue ever since. Managing antibiotic resistance in clinical settings continues to be challenging, particularly with the rise of superbugs, or bacteria resistant to multiple antibiotics, known as multidrug-resistant (MDR) bacteria. This rapid development of resistance has compelled researchers to continuously seek new antimicrobial agents to curb resistance, despite a shrinking pipeline of new drugs. Recently, the focus of antimicrobial discovery has shifted to plants, fungi, lichens, endophytes, and various marine sources, such as seaweeds, corals, and other microorganisms, due to their promising properties. For this review, an extensive search was conducted across multiple scientific databases, including PubMed, Elsevier, ResearchGate, Scopus, and Google Scholar, encompassing publications from 1929 to 2024. This review provides a concise overview of the mechanisms employed by bacteria to develop antibiotic resistance, followed by an in-depth exploration of plant secondary metabolites as a potential solution to MDR pathogens. In recent years, the interest in plant-based medicines has surged, driven by their advantageous properties. However, additional research is essential to fully understand the mechanisms of action and verify the safety of antimicrobial phytochemicals. Future prospects for enhancing the use of plant secondary metabolites in combating antibiotic-resistant pathogens will also be discussed.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"7 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-08DOI: 10.3390/antibiotics13080745
Jayendra Chunduru, Nicholas LaRoe, Jeremy Garza, Abdul Hamood, P. Paré
{"title":"Nosocomial Bacteria Inhibition with Polymyxin B: In Silico Gene Mining and In Vitro Analysis","authors":"Jayendra Chunduru, Nicholas LaRoe, Jeremy Garza, Abdul Hamood, P. Paré","doi":"10.3390/antibiotics13080745","DOIUrl":"https://doi.org/10.3390/antibiotics13080745","url":null,"abstract":"Multidrug-resistant bacteria present a significant public health challenge; such pathogens exhibit reduced susceptibility to conventional antibiotics, limiting current treatment options. Cationic non-ribosomal peptides (CNRPs) such as brevicidine and polymyxins have emerged as promising candidates to block Gram-negative bacteria. To investigate the capability of bacteria to biosynthesize CNRPs, and specifically polymyxins, over 11,000 bacterial genomes were mined in silico. Paenibacillus polymyxa was identified as having a robust biosynthetic capacity, based on multiple polymyxin gene clusters. P. polymyxa biosynthetic competence was confirmed by metabolite characterization via HPLC purification and MALDI TOF/TOF analysis. When grown in a selected medium, the metabolite yield was 4 mg/L with a 20-fold specific activity increase. Polymyxin B (PMB) was assayed with select nosocomial pathogens, including Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumaii, which exhibited minimum inhibitory concentrations of 4, 1, and 1 µg/mL, respectively.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"70 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AntibioticsPub Date : 2024-08-07DOI: 10.3390/antibiotics13080744
Siyu Yang, Fangquan Liu, Yue Leng, Meiyue Zhang, Lei Zhang, Xuekun Wang, Yinhu Wang
{"title":"Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria","authors":"Siyu Yang, Fangquan Liu, Yue Leng, Meiyue Zhang, Lei Zhang, Xuekun Wang, Yinhu Wang","doi":"10.3390/antibiotics13080744","DOIUrl":"https://doi.org/10.3390/antibiotics13080744","url":null,"abstract":"Infections caused by multidrug-resistant pathogens have emerged as a serious threat to public health. To develop new antibacterial agents to combat such drug-resistant bacteria, a class of novel amphiphilic xanthoangelol-derived compounds were designed and synthesized by mimicking the structure and function of antimicrobial peptides (AMPs). Among them, compound 9h displayed excellent antimicrobial activity against the Gram-positive strains tested (MICs = 0.5–2 μg/mL), comparable to vancomycin, and with low hemolytic toxicity and good membrane selectivity. Additionally, compound 9h demonstrated rapid bactericidal effects, low resistance frequency, low cytotoxicity, and good plasma stability. Mechanistic studies further revealed that compound 9h had good membrane-targeting ability and was able to destroy the integrity of bacterial cell membranes, causing an increase in intracellular ROS and the leakage of DNA and proteins, thus accelerating bacterial death. These results make 9h a promising antimicrobial candidate to combat bacterial infection.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In Vitro Inhibitory Effect of Silver Diamine Fluoride Combined with Potassium Iodide against Mixed-Species Biofilm Formation on Human Root Dentin","authors":"Jutharat Manuschai, Maki Sotozono, Shoji Takenaka, Niraya Kornsombut, Ryouhei Takahashi, Rui Saito, Ryoko Nagata, Takako Ida, Yuichiro Noiri","doi":"10.3390/antibiotics13080743","DOIUrl":"https://doi.org/10.3390/antibiotics13080743","url":null,"abstract":"Applying a saturated potassium iodide (KI) solution immediately after silver diamine fluoride (SDF) application may affect the inhibitory effects of SDF on biofilm formation. This study compared the efficacy of 38% SDF with and without KI on preventing mixed-species biofilm formation on human root dentin surfaces and assessed ion incorporation into root dentin. The biofilms, composed of Streptococcus mutans, Lactobacillus rhamnosus, and Actinomyces naeslundii, were grown on specimen surfaces treated with either SDF or SDF + KI. After 24 h, the biofilms were evaluated using scanning electron microscopy, live/dead staining, adenosine triphosphate (ATP) assays, colony-forming unit (CFU) counts, and quantitative polymerase chain reaction. A Mann–Whitney U test was used to compare the results between the groups. Ion incorporation was assessed using an electron probe microanalyzer. The relative ATP content in the SDF + KI group was significantly higher than that in the SDF group (p < 0.05). However, biofilm morphology and the logarithmic reduction in CFUs and bacterial DNA were comparable across the groups. The SDF + KI treatment resulted in less silver and fluoride ion incorporation than that yielded by SDF alone. The inhibitory effects of SDF and SDF + KI on mixed-species biofilm formation were almost equivalent, although KI application affected the ion incorporation.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141944287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}