Aquatic Ecosystem Health & Management最新文献

筛选
英文 中文
Nutrient and environmental factors regulating western Lake Erie cyanobacterial blooms 调节伊利湖西部蓝藻藻华的营养物质和环境因素
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-05-01 DOI: 10.14321/aehm.026.04.63
Hounshell A.G., Johnson L.T., Stumpf R.P.
{"title":"Nutrient and environmental factors regulating western Lake Erie cyanobacterial blooms","authors":"Hounshell A.G., Johnson L.T., Stumpf R.P.","doi":"10.14321/aehm.026.04.63","DOIUrl":"https://doi.org/10.14321/aehm.026.04.63","url":null,"abstract":"Over the past two decades, western Lake Erie has experienced recurring summer cyanobacterial blooms that pose severe negative impacts on human, animal, and ecological health. Previous research has identified a strong correlation between annual cyanobacterial bloom intensity and preceding spring (March-July) phosphorus loading from the Maumee river, the largest tributary to western Lake Erie, which is used to predict upcoming summer bloom severity. Maumee river spring phosphorus load, however, does not explain all the variation of bloom severity between years. Considering additional environmental parameters may help to better capture the physical and biogeochemical processes that regulate bloom severity, eventually leading to improved cyanobacterial forecasts which serve as an early warning for Lake Erie stakeholders. We aggregated various environmental parameters that may influence western Lake Erie cyanobacterial blooms to examine these factors as potential predictors for annual bloom severity. These included nitrogen and phosphorus loading from the Maumee river, freshwater discharge from the primary rivers and tributaries (Detroit, Huron, Raisin, Maumee, and Portage rivers), seasonal lake surface water temperature (mean winter, spring, and summer temperature), and Lake Erie winter ice extent and duration from 2002-2022. Empirical model results show that spring phosphorus loading, as total bioavailable phosphorus, from the Maumee river remains the dominant environmental factor controlling cyanobacterial blooms. However, additional environmental factors, such as Maumee river winter phosphorus loads and Lake Erie winter ice extent and timing, are likely important in modulating bloom severity, particularly in years with moderate phosphorus loads. Finally, we suggest incorporating mechanistic or rule-based models, in addition to empirical models, to better understand and predict annual cyanobacterial bloom severity. The updated models not only improve seasonal forecast accuracy which provides advanced warning of bloom severity to Lake Erie stakeholders, but also helps identify which factors we can better manage to reduce the frequency of severe blooms.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"5 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic modelling of coastal aquaculture systems: A Review 沿海水产养殖系统的动态建模:综述
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.40
M. Muralidhar, J. Ashok Kumar, S. Suvana, M. Jayanthi, P. Vishwajeet, J. Syama Dayal
{"title":"Dynamic modelling of coastal aquaculture systems: A Review","authors":"M. Muralidhar, J. Ashok Kumar, S. Suvana, M. Jayanthi, P. Vishwajeet, J. Syama Dayal","doi":"10.14321/aehm.026.03.40","DOIUrl":"https://doi.org/10.14321/aehm.026.03.40","url":null,"abstract":"Coastal aquaculture is an important economic activity in India dominated majorly by shrimp culture, which involves a range of interconnected processes that are challenging to analyse and optimise without a systematic approach. System dynamics modelling is a useful tool for understanding and predicting the behavior of complex coastal aquaculture systems. here, we review the status of dynamic simulation modelling works undertaken in aquaculture, which can provide directives for various researchers working on developing simulation models for shrimp aquaculture. There is a need to assess the impact of dynamic forces on the animals during the culture period which could be addressed through these models. System dynamic models assist decision-makers to augment potential measures for aquaculture-related problems under different possible scenarios. System dynamic models developed in aquaculture were related to feeding, water quality parameters, nitrogen dynamics, growth, etc. The strengths and limitations of software packages used in developing the simulation models are discussed. Considering the economic potential of shrimp aquaculture, it is important to develop an integrated dynamic model for predicting all the sub-processes of shrimp aquaculture.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"14 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling to inform the conservation and management of aquatic ecosystems: A synthesis of five case studies 建立模型,为水生生态系统的保护和管理提供信息:五项案例研究综述
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.62
Marten A. Koops
{"title":"Modelling to inform the conservation and management of aquatic ecosystems: A synthesis of five case studies","authors":"Marten A. Koops","doi":"10.14321/aehm.026.03.62","DOIUrl":"https://doi.org/10.14321/aehm.026.03.62","url":null,"abstract":"Abstract not available","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"3 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling effects of nutrients and hypoxia on Lake Erie's central basin foodweb 营养物质和缺氧对伊利湖中部流域食物网的影响建模
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.05
Hongyan Zhang, Doran M. Mason, Edward S. Rutherford, Marten A. Koops, Timothy B. Johnson, Ann Marie Gorman, Mark Rowe, Xinhua Zhu, Monir Hossain, H. Andrew Cook
{"title":"Modelling effects of nutrients and hypoxia on Lake Erie's central basin foodweb","authors":"Hongyan Zhang, Doran M. Mason, Edward S. Rutherford, Marten A. Koops, Timothy B. Johnson, Ann Marie Gorman, Mark Rowe, Xinhua Zhu, Monir Hossain, H. Andrew Cook","doi":"10.14321/aehm.026.03.05","DOIUrl":"https://doi.org/10.14321/aehm.026.03.05","url":null,"abstract":"Hypoxia (dissolved oxygen < 2 mg l-1) has long been a prevalent feature of the central basin of Lake Erie. Studies of the sublethal impacts of hypoxia on fishes have focused on individual species feeding rates, behavior and spatial distributions over short time periods, but the long-term effects on the fish community and its foodweb are poorly known. Sublethal effects of hypoxia on fish include: interrupting their vertical migration, displacing them from bottom habitats either up into the water column or away from the hypoxic zones, altering predator-prey relationships by segregation or aggregation of predators and their prey, and increasing fishing mortality by concentrating fish at the edge of hypoxic zones. We used the Ecopath with Ecosim foodweb model to investigate the singular and combined effects of nutrient concentration and hypoxia on the foodweb structure in Lake Erie's central basin. Our model tracked predator-prey interactions and population biomass of 33 model groups. We balanced the model in Ecopath and calibrated it against biomass time series data from 1996 up to 2020. Model simulations were run with varied nutrients (from 20 to 220% of the previous nutrient loading target level) and hypoxia (none, average summer value from 1996 to 2017, historical high) as forcing variables on the foodweb. Model results suggested that nutrients had positive, non-linear effects on foodweb biomass, while hypoxia decreased biomass of benthos, benthivorous fishes, and some omnivores, but increased biomass of plankton and planktivorous fishes. Nutrient effects were greater than hypoxia effects on the foodweb. Results of the foodweb model analysis may inform water quality and fisheries management strategies for Lake Erie's central basin.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"11 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling the current status of Lake Malawi fish stocks, an inland lake in East Africa 东非内陆湖马拉维湖鱼类种群现状建模
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.26
Weyl O. L., M'balaka M. S., Sharma R., Cope J, Kafumbata D.
{"title":"Modelling the current status of Lake Malawi fish stocks, an inland lake in East Africa","authors":"Weyl O. L., M'balaka M. S., Sharma R., Cope J, Kafumbata D.","doi":"10.14321/aehm.026.03.26","DOIUrl":"https://doi.org/10.14321/aehm.026.03.26","url":null,"abstract":"Inland rift valley lake systems have been sustaining humanity for a long time. Only recently have commercial fisheries entered these systems and for Lake Malawi, this occurred in the mid-1970s upon successful experimental trawl fishing. Lake Malawi with the highest diversity of freshwater fishes in the world has had fisheries for centuries. Previous assessment of the impact of commercial trawl fisheries revealed significant changes in stock composition and overall biomass. The study evaluates the state of fisheries resources using novel techniques developed using integrated assessment methods amenable to data poor fisheries. Data from biomass assessment surveys and landed catch from 2016 to 2019 were examined to determine the status of selected fish stocks over time. Stock Synthesis for Data Limited tools in R environment were used to run the models. The Surplus Production Models and Statistical catch-at-age models that were used to examine alternative hypotheses on life history parameters on the key stocks exploited primarily by the commercial trawl fishery and evaluate long-term trends on these populations. The study results revealed that Mcheni (Rhamphochromis spp.), Ndunduma (Diplotaxodon limnothrissa) and Utaka (Copadichromis virginalis) stocks are within the sustainable limits, while Chambo (Oreochromis karongae), Chisawasawa (Lethrinops gossei), Mlamba (Bathyclarias nyasensis) and Kampango (Bagrus meridionalis) appear to be overfished in recent years, though Kampango may have recovered recently. Given, the large uncertainties with productivity of most tropical fishes with climate change, as well as large uncertainties due to inaccurate and untimely data submissions, it is recommended that a systematic monitoring and evaluation program, like the one being conducted in Lake Malawi should be developed for other inland lake systems. If stocks are facing overfishing by both the small-scale and commercial trawl fisheries, limits to overall catch and size should be implemented possibly through output controls such that the fisheries remain sustainable for the long term.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"19 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical modelling of aquatic size spectra: integrating data from multiple taxa and sampling methods 水生生物体型光谱的统计建模:整合来自多个分类群和采样方法的数据
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.17
Henrique Corrêa Giacomini, Derrick T. de Kerckhove, Victoria Kopf, Cindy Chu
{"title":"Statistical modelling of aquatic size spectra: integrating data from multiple taxa and sampling methods","authors":"Henrique Corrêa Giacomini, Derrick T. de Kerckhove, Victoria Kopf, Cindy Chu","doi":"10.14321/aehm.026.03.17","DOIUrl":"https://doi.org/10.14321/aehm.026.03.17","url":null,"abstract":"Size spectra are used to assess the status and functioning of marine and freshwater ecosystems worldwide. Their use is underpinned by theory linking the dynamics of trophic interactions to a power-law decline of abundance with body size in ecological communities. Recent papers on empirical size spectrum estimation have argued for Maximum Likelihood Estimation of power-law probability distributions as a more accurate alternative to traditional linear regression approaches. One major limitation of currently used size spectrum estimators from Maximum Likelihood Estimation is that they cannot account for the use of multiple sampling protocols, nor the distortions caused by gear size selectivity, and therefore they become restricted to a relatively narrow taxonomic group and size range. Further progress in the field requires new methods that are flexible enough to combine multiple trophic groups and sampling gears into a single size spectrum estimate, while taking advantage of more accurate distributional approaches. The method we propose in this paper fills this gap by deriving the distribution of observed sizes explicitly from the underlying power-law spectrum and gear selectivity functions. It specifies likelihoods as a product of two components: (i) the probability of belonging to a given group and (ii) the probability distribution within the group. Using Bayesian estimation, we applied the method to surveys of phytoplankton, zooplankton, and fishes in lakes of Quetico Provincial Park, northwestern Ontario, using Van Dorn samplers, zooplankton nets, gillnets, and hydroacoustics. The results show that the spectra estimated from subsets of trophic groups or gears are weak predictors of more complete spectra, highlighting the importance of using more inclusive community data. The two-component partitioning of likelihoods also helped demonstrate the existence of between-group spectrum slopes that were overall steeper than within-group slopes, indicating that heterogeneity of trophic transfers across the size spectrum is an important factor structuring these ecosystems.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"13 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Past and future freshwater availability scenarios and their impact on the Indian Sundarbans ecosystem and fisheries 过去和未来的淡水供应情况及其对印度孙德尔本斯生态系统和渔业的影响
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.53
Lalu Das, Sayani Bhowmick, Purba Goswami, Ratul Roy Choudhury, Javed Akhter
{"title":"Past and future freshwater availability scenarios and their impact on the Indian Sundarbans ecosystem and fisheries","authors":"Lalu Das, Sayani Bhowmick, Purba Goswami, Ratul Roy Choudhury, Javed Akhter","doi":"10.14321/aehm.026.03.53","DOIUrl":"https://doi.org/10.14321/aehm.026.03.53","url":null,"abstract":"The Indian Sundarbans is considered one of the zones of highest vulnerability in the world in terms of climate change. About 4.43 million people living in the Indian Sundarbans face a lack of freshwater availability due to the erratic behaviour of monsoon rains, frequent cyclonic storms, intrusion of saline water, and other factors, all of which affect the fisheries and agriculture activities of this area. In this study, estimates of freshwater availability through past and predicted future rainfall and evapotranspiration change scenarios in the Sundarbans are presented. Due to the lack of high-quality in-situ data, various sources of gridded rainfall and evapotranspiration data were used. Between 1948 and 2010, half of the 19 administrative blocks showed a decreasing trend of monsoonal rainfall while the rest showed an increasing trend. Freshwater availability showed a decreasing trend during the monsoon season over different blocks of the Sundarbans, which is a matter of great concern for fisheries and agricultural activities. Statistical downscaling was used to generate future rainfall and evapotranspiration scenarios, using coarse resolution Global Climate Models from the Coupled Model Intercomparison Project phase five for a smaller area like the Sundarbans. Downscaled Global Climate Models project an increasing trend in future monsoon rainfall in both RCP 4.5 and RCP 8.5 emission scenarios. The increasing rainfall can trigger excessive run-off and flooding, which would in turn affect aquaculture infrastructure and damage lentic aquaculture productions across the Sundarbans. however, increased rainfall may expand the flood plain area and extend the feeding grounds of fish. hence, the impact of rainfall change is quite unpredictable. Proper adaptation techniques may be required to harness the positive impacts while preventing negative effects.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"14 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategic plan to restore a shallow overgrowing macrophyte lake 恢复浅水过度生长大型藻类湖泊的战略计划
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.66
Kairi Maileht, Tiina Nõges, Ronald Laarmaa, Maili Lehtpuu, Margot Sepp, Leho Luigujõe, Katrin Saar, Teet Krause, Madis Metsur, Kalev Raadla, Kaarel Võhandu, Priit Zingel, Peeter Nõges, Ingmar Ott
{"title":"Strategic plan to restore a shallow overgrowing macrophyte lake","authors":"Kairi Maileht, Tiina Nõges, Ronald Laarmaa, Maili Lehtpuu, Margot Sepp, Leho Luigujõe, Katrin Saar, Teet Krause, Madis Metsur, Kalev Raadla, Kaarel Võhandu, Priit Zingel, Peeter Nõges, Ingmar Ott","doi":"10.14321/aehm.026.03.66","DOIUrl":"https://doi.org/10.14321/aehm.026.03.66","url":null,"abstract":"As a result of natural and anthropogenic eutrophication, shallow lakes ultimately become wetlands. Several aquatic ecosystem values diminish, but some biotic communities may benefit. Lake Lahepera is a very shallow lake filled with sediments and overgrown with macrophytes. It is a former bay and an important spawning ground for fishes of Lake Peipsi, the fourth largest lake in Europe. The main question is, how to reconcile the goals of nature conservation and circular economy – restore and maintain good functioning of the lake ecosystem, preserve habitats for wetland communities, make economic use of sapropel, and renew spawning conditions for fish. The lake has been investigated since the 1950s. Resulting from strong human pressure, especially in the 1970s and 1980s, the accumulated organic sediments and macrophyte overgrowth have diminished the habitat diversity of the lake. Irregular flushing of the lake with Lake Peipsi waters can wash away large amounts of phosphorus. According to the investigations in 2014-15, phosphorus in- and outflow are in balance, but the internal loading is high. A set of possible restoration options with sediment and macrophyte removal methods is proposed and their outcome assessed using the ecosystem service concept. A comparison of possible future scenarios, based ecosystem service values shows that with a balanced combination of different habitat restoration methods it is possible to achieve stable ecological status of the lake. Species diversity, especially that of floating leaved macrophytes, will increase in the lake. At the same time, wetland habitats will retain their values.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"13 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating the local knowledge of fishers into an ecological model for the sustainable management of a protected coastal lagoon area in Uruguay 将渔民的当地知识纳入乌拉圭沿海泻湖保护区可持续管理的生态模式中
IF 0.8 4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2024-02-01 DOI: 10.14321/aehm.026.03.83
Francisco Malfatti, Diego Lercari, Leandro Bergamino
{"title":"Integrating the local knowledge of fishers into an ecological model for the sustainable management of a protected coastal lagoon area in Uruguay","authors":"Francisco Malfatti, Diego Lercari, Leandro Bergamino","doi":"10.14321/aehm.026.03.83","DOIUrl":"https://doi.org/10.14321/aehm.026.03.83","url":null,"abstract":"This study uses the local knowledge of artisanal fishers to assess ecosystem structure, functioning, and fishing impacts within a coastal lagoon in Uruguay. To this end, we used an Ecopath with Ecosim modelling approach based on fishers' knowledge and scientific data. The model considered 23 functional groups, while three fleets represented fishing activities targeting different species. The model output shows a foodweb which spans four trophic levels, including fish species as top predators, such as the flatfish Paralichthys orbignyanus and the tararira Hoplias malabaricus. Furthermore, according to fishers' knowledge, gastropods, polychaetes, and bivalves constitute primary consumers, while detritus and phytoplankton represent the primary food sources. The trophic impact analysis shows that the fish Mugil spp. and Odontesthes spp. generate important positive and negative impacts on most other ecosystem components, while fishing impacts occur at moderate exploitation levels on the targeted fish species. The indicators of the ecosystem effects of fishing including The Trophic Level of the Catch ranging from 2.4 to 2.6, the Primary Production Required showing relative low values of 2.3% and low probability of an ecosystem being sustainably fished alert us to the risk of ecosystem-level overfishing. The vast potential of fishers' knowledge in research can allow the co-creation of new insights into ecosystem structure and function. By including fishers in research, local communities can be empowered and benefit from management decisions through their trust in science.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"14 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface: Sharing memories of Mr. Cees van de Guchte 前言:缅怀吉斯·范·德·古赫特先生
4区 环境科学与生态学
Aquatic Ecosystem Health & Management Pub Date : 2023-04-01 DOI: 10.14321/aehm.026.02.01
Kenzo Hiroki
{"title":"Preface: Sharing memories of Mr. Cees van de Guchte","authors":"Kenzo Hiroki","doi":"10.14321/aehm.026.02.01","DOIUrl":"https://doi.org/10.14321/aehm.026.02.01","url":null,"abstract":"I, together with hundreds and thousands of water people including international and national leaders, politicians, scientists, researchers, administrators, experts, representatives of the private sector and civil society, and stakeholders and citizens, would like to express my deepest respect and sincerest thanks to our beloved friend, the late Mr. Cees van der Guchte. Although the sorrow and regret of losing him from this world will never leave us and his family, his path of achievements will not be lost on earth, reminding us of his tall silhouette relentlessly working for the global good.His dedication and passion for water issues have been internationally known. Cees extensively contributed to the public by proactively engaging himself in a cornucopia of water issues, particularly on water risks and emergency management. High-level Experts Leaders Panel on Water and Disasters (HELP), to which Cees was a respected advisor, always relied on his thoughtful advice and suggestions in pursuing its mission.When COVID-19 hit the world, HELP decided to create the Principles to Address Water-related Disaster Risk Reduction under COVID-19 Pandemic, a guidance that helped all stakeholders prevent infection during disasters, while at the same mitigate disasters even under extremely difficult situations of spreading infection and through lockdowns. Cees gave numerous good suggestions and advice in meetings online and in person to help the idea of Principles shape up into a concrete document. Thanks to him, Principles was launched only two months after the advent of the infectious decease and before the first rainy season in many countries, after the start of the pandemic. Principles has been translated into 16 languages and saved millions from double impacts of disasters and COVID-19.Cees’ international contribution was prominent particularly in drought management. I was reminded of his profound insight and broad knowledge when I read his proposal to create a document, Developing Inclusive, Adaptive Strategies for Prevention of Water-Related Disaster Risk and the briefing note: Droughts: At the Intersection of Water, Climate, and Disaster Risk Reduction. I was greatly impressed, not only by his well-crafted systematic approach supported by viable facts and data, but also by his deep sympathy and compassion for the people who are hit by serious water shortages in many parts of the world, especially the poor.Cees was always gentle and polite. When I looked up to see his face (because of our height difference), his smile was always there. When he opened his mouth, however, his logics were crystal clear, straight, and to the point, guiding politicians, experts, and others to the direction of actions he suggested. HELP Principles for Drought Risk Management under a Changing Climate is his legacy work, though he did not see the launch of this masterpiece. His colleagues from the Dutch Ministry of Infrastructure and Water Management and Deltares finalized his wor","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"49 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135772681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信