M. Muralidhar, J. Ashok Kumar, S. Suvana, M. Jayanthi, P. Vishwajeet, J. Syama Dayal
{"title":"沿海水产养殖系统的动态建模:综述","authors":"M. Muralidhar, J. Ashok Kumar, S. Suvana, M. Jayanthi, P. Vishwajeet, J. Syama Dayal","doi":"10.14321/aehm.026.03.40","DOIUrl":null,"url":null,"abstract":"Coastal aquaculture is an important economic activity in India dominated majorly by shrimp culture, which involves a range of interconnected processes that are challenging to analyse and optimise without a systematic approach. System dynamics modelling is a useful tool for understanding and predicting the behavior of complex coastal aquaculture systems. here, we review the status of dynamic simulation modelling works undertaken in aquaculture, which can provide directives for various researchers working on developing simulation models for shrimp aquaculture. There is a need to assess the impact of dynamic forces on the animals during the culture period which could be addressed through these models. System dynamic models assist decision-makers to augment potential measures for aquaculture-related problems under different possible scenarios. System dynamic models developed in aquaculture were related to feeding, water quality parameters, nitrogen dynamics, growth, etc. The strengths and limitations of software packages used in developing the simulation models are discussed. Considering the economic potential of shrimp aquaculture, it is important to develop an integrated dynamic model for predicting all the sub-processes of shrimp aquaculture.","PeriodicalId":8125,"journal":{"name":"Aquatic Ecosystem Health & Management","volume":"14 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic modelling of coastal aquaculture systems: A Review\",\"authors\":\"M. Muralidhar, J. Ashok Kumar, S. Suvana, M. Jayanthi, P. Vishwajeet, J. Syama Dayal\",\"doi\":\"10.14321/aehm.026.03.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal aquaculture is an important economic activity in India dominated majorly by shrimp culture, which involves a range of interconnected processes that are challenging to analyse and optimise without a systematic approach. System dynamics modelling is a useful tool for understanding and predicting the behavior of complex coastal aquaculture systems. here, we review the status of dynamic simulation modelling works undertaken in aquaculture, which can provide directives for various researchers working on developing simulation models for shrimp aquaculture. There is a need to assess the impact of dynamic forces on the animals during the culture period which could be addressed through these models. System dynamic models assist decision-makers to augment potential measures for aquaculture-related problems under different possible scenarios. System dynamic models developed in aquaculture were related to feeding, water quality parameters, nitrogen dynamics, growth, etc. The strengths and limitations of software packages used in developing the simulation models are discussed. Considering the economic potential of shrimp aquaculture, it is important to develop an integrated dynamic model for predicting all the sub-processes of shrimp aquaculture.\",\"PeriodicalId\":8125,\"journal\":{\"name\":\"Aquatic Ecosystem Health & Management\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Ecosystem Health & Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.14321/aehm.026.03.40\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecosystem Health & Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.14321/aehm.026.03.40","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dynamic modelling of coastal aquaculture systems: A Review
Coastal aquaculture is an important economic activity in India dominated majorly by shrimp culture, which involves a range of interconnected processes that are challenging to analyse and optimise without a systematic approach. System dynamics modelling is a useful tool for understanding and predicting the behavior of complex coastal aquaculture systems. here, we review the status of dynamic simulation modelling works undertaken in aquaculture, which can provide directives for various researchers working on developing simulation models for shrimp aquaculture. There is a need to assess the impact of dynamic forces on the animals during the culture period which could be addressed through these models. System dynamic models assist decision-makers to augment potential measures for aquaculture-related problems under different possible scenarios. System dynamic models developed in aquaculture were related to feeding, water quality parameters, nitrogen dynamics, growth, etc. The strengths and limitations of software packages used in developing the simulation models are discussed. Considering the economic potential of shrimp aquaculture, it is important to develop an integrated dynamic model for predicting all the sub-processes of shrimp aquaculture.
期刊介绍:
The journal publishes articles on the following themes and topics:
• Original articles focusing on ecosystem-based sciences, ecosystem health and management of marine and aquatic ecosystems
• Reviews, invited perspectives and keynote contributions from conferences
• Special issues on important emerging topics, themes, and ecosystems (climate change, invasive species, HABs, risk assessment, models)