{"title":"A Guide to Hunting Long-Lived Particles at the LHC","authors":"S. Knapen, S. Lowette","doi":"10.1146/annurev-nucl-101920-013011","DOIUrl":"https://doi.org/10.1146/annurev-nucl-101920-013011","url":null,"abstract":"This article is a pedagogical review of searches for long-lived particles at the LHC. It is primarily aimed at experimentalists and theorists seeking to initiate and/or deepen their research in this field. We cover the general theoretical motivation and some example models, the main experimental techniques employed in searches for long-lived particles, and some of the important subtleties involved in estimating signal efficiencies and background rates. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"1 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41666866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Medium Response and Jet–Hadron Correlations in Relativistic Heavy-Ion Collisions","authors":"S. Cao, G. Qin","doi":"10.1146/annurev-nucl-112822-031317","DOIUrl":"https://doi.org/10.1146/annurev-nucl-112822-031317","url":null,"abstract":"The study of high-energy heavy-ion collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider has evolved from a qualitative understanding to the precise extraction of the properties of the quantum chromodynamics medium at extremely high temperatures. Jet quenching has offered unique insights into the transport properties of the quark–gluon plasma (QGP) created in these energetic collisions. Apart from medium modification of jets, jet-induced medium excitation constitutes another crucial aspect of jet–QGP interaction and is indispensable in understanding the soft components of jets. We review recent theoretical and phenomenological developments regarding medium response to jet energy loss, including an overview of both weakly and strongly coupled approaches for describing the thermalization and propagation of energy deposition from jets, effects of medium response on jet observables, and exploration of its unique signatures in jet–hadron correlations. Jet-induced medium excitation is shown to be an essential component in probing the in-medium dynamics of jets and a critical step toward precise extraction of the QGP properties. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42435442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Hubble Tension and Early Dark Energy","authors":"M. Kamionkowski, A. Riess","doi":"10.1146/annurev-nucl-111422-024107","DOIUrl":"https://doi.org/10.1146/annurev-nucl-111422-024107","url":null,"abstract":"Over the past decade, the disparity between the value of the cosmic expansion rate determined directly from measurements of distance and redshift and that determined instead from the standard Lambda cold dark matter (ΛCDM) cosmological model, calibrated by measurements from the early Universe, has grown to a level of significance requiring a solution. Proposed systematic errors are not supported by the breadth of available data (and unknown errors untestable by lack of definition). Simple theoretical explanations for this Hubble tension that are consistent with the majority of the data have been surprisingly hard to come by, but in recent years, attention has focused increasingly on models that alter the early or pre-recombination physics of ΛCDM as the most feasible. Here, we describe the nature of this tension and emphasize recent developments on the observational side. We then explain why early-Universe solutions are currently favored and the constraints that any such model must satisfy. We discuss one workable example, early dark energy, and describe how it can be tested with future measurements. Given an assortment of more extended recent reviews on specific aspects of the problem, the discussion is intended to be fairly general and understandable to a broad audience. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 73 is September 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48100980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fundamental Neutron Physics at Spallation Sources","authors":"N. Fomin, J. Fry, R. Pattie, G. Greene","doi":"10.1146/annurev-nucl-121521-051029","DOIUrl":"https://doi.org/10.1146/annurev-nucl-121521-051029","url":null,"abstract":"Low-energy neutrons have been a useful probe in fundamental physics studies for more than 70 years. With advances in accelerator technology, many new sources are spallation based. These new, high-flux facilities are becoming the sites for many next-generation fundamental neutron physics experiments. In this review, we present an overview of the sources and the current and upcoming fundamental neutron physics programs.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47403009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel Quantum Sensors for Light Dark Matter and Neutrino Detection","authors":"S. Golwala, E. Figueroa-Feliciano","doi":"10.1146/annurev-nucl-102020-112133","DOIUrl":"https://doi.org/10.1146/annurev-nucl-102020-112133","url":null,"abstract":"The fields of light dark matter and neutrino physics offer compelling signals at recoil energies of eV to even meV, well below the [Formula: see text] keV thresholds of many techniques currently employed in these fields. Sensing of such small energies can benefit from the emergence of so-called quantum sensors, which employ fundamentally quantum mechanical phenomena to transduce energy depositions into electrical signals. This review focuses on quantum sensors under development that will enhance and extend the search for “particle-like” interactions of dark matter or enable new measurements of neutrino properties in the coming years.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45703721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Searches for Heavy Resonances with Substructure","authors":"P. Maksimovic","doi":"10.1146/annurev-nucl-102419-055402","DOIUrl":"https://doi.org/10.1146/annurev-nucl-102419-055402","url":null,"abstract":"In the past decade, the Large Hadron Collider (LHC) has probed a higher energy scale than ever before. Most models of physics beyond the standard model (BSM) predict the production of new heavy particles; the LHC results have excluded lower masses of such particles. This makes the high-mass regions especially interesting for current and future searches. In most BSM scenarios of interest, the new heavy resonances decay to standard model particles. In a subset of these models, the new particles have large couplings to the top quark, the W and Z bosons, or the Higgs boson. The top quark and W, Z, and Higgs bosons often decay to quarks, giving rise to jets of particles with substructure; event selection based on substructure is used to suppress standard model backgrounds. This review covers the key concepts in experimental searches based on the jet substructure and discusses recent results from the ATLAS and CMS experiments. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49593152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications","authors":"A. Davis","doi":"10.1146/annurev-nucl-010722-074615","DOIUrl":"https://doi.org/10.1146/annurev-nucl-010722-074615","url":null,"abstract":"Several short-lived radionuclides (SLRs) were present in the first few million years of Solar System history. Their abundances have profound impact on the timing of stellar nucleosynthesis events prior to Solar System formation, chronology of events in the early Solar System, early solar activity, heating of early-formed planetesimals, and chronology of planet formation. Isotopic analytical techniques have undergone dramatic improvements in the past decade, leading to tighter constraints on the levels of SLRs in the early Solar System and on the use of these nuclides for detailed chronological studies. This review emphasizes the abundances of SLRs when the Solar System formed and how we know them, and briefly discusses the origins of these nuclides and applications in planetary science. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43902457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexey Lokhov, Susanne Mertens, Diana S. Parno, Magnus Schlösser, Kathrin Valerius
{"title":"Probing the Neutrino-Mass Scale with the KATRIN Experiment","authors":"Alexey Lokhov, Susanne Mertens, Diana S. Parno, Magnus Schlösser, Kathrin Valerius","doi":"10.1146/annurev-nucl-101920-113013","DOIUrl":"https://doi.org/10.1146/annurev-nucl-101920-113013","url":null,"abstract":"The absolute mass scale of neutrinos is an intriguing open question in contemporary physics. The as-yet-unknown mass of the lightest and, at the same time, most abundant massive elementary particle species bears fundamental relevance to theoretical particle physics, astrophysics, and cosmology. The most model-independent experimental approach consists of precision measurements of the kinematics of weak decays, notably tritium β decay. With the KATRIN experiment, this direct neutrino-mass measurement has entered the sub-eV domain, recently pushing the upper limit on the electron-based neutrino mass down to 0.8 eV (90% CL) on the basis of first-year data out of ongoing, multiyear operations. Here, we review the experimental apparatus of KATRIN, the progress of data taking, and initial results. While KATRIN is heading toward the target sensitivity of 0.2 eV, other scientific goals are pursued. We discuss the search for light sterile neutrinos and an outlook on future keV-scale sterile-neutrino searches as well as further physics opportunities beyond the Standard Model.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"132 ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring Stars in Underground Laboratories: Challenges and Solutions","authors":"M. Aliotta, A. Boeltzig, R. Depalo, G. Gyürky","doi":"10.1146/annurev-nucl-110221-103625","DOIUrl":"https://doi.org/10.1146/annurev-nucl-110221-103625","url":null,"abstract":"For millennia, mankind has been fascinated by the marvel of the starry night sky. Yet, a proper scientific understanding of how stars form, shine, and die is a relatively recent achievement, made possible by the interplay of different disciplines as well as by significant technological, theoretical, and observational progress. We now know that stars are sustained by nuclear fusion reactions and are the furnaces where all chemical elements continue to be forged out of primordial hydrogen and helium. Studying these reactions in terrestrial laboratories presents serious challenges and often requires developing ingenious instrumentation and detection techniques. Here, we reveal how some of the major breakthroughs in our quest to unveil the inner workings of stars have come from the most unexpected of places: deep underground. As we celebrate 30 years of activity at the first underground laboratory for nuclear astrophysics, LUNA, we review some of the key milestones and anticipate future opportunities for further advances both at LUNA and at other underground laboratories worldwide. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 72 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45771611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Proton Structure in and out of Muonic Hydrogen","authors":"A. Antognini, F. Hagelstein, V. Pascalutsa","doi":"10.1146/annurev-nucl-101920-024709","DOIUrl":"https://doi.org/10.1146/annurev-nucl-101920-024709","url":null,"abstract":"Laser spectroscopy of muonic atoms has been recently used to probe properties of light nuclei with unprecedented precision. We introduce nuclear effects in hydrogen-like atoms, nucleon structure quantities (form factors, structure functions, polarizabilities), and their effects in the Lamb shift and hyperfine splitting (HFS) of muonic hydrogen (μH). Updated theory predictions for the Lamb shift and HFS in μH are presented. We review the challenges of the ongoing effort to measure the ground-state HFS in μH and its impact on our understanding of the nucleon spin structure. To narrow down this search, we present a novel theory prediction obtained by scaling the measured HFS in hydrogen while leveraging radiative corrections. We also summarize recent developments in the spectroscopy of simple atomic and molecular systems and emphasize how they allow for precise determinations of fundamental constants, bound-state QED tests, and New Physics searches.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":" ","pages":""},"PeriodicalIF":12.4,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47400689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}