用于光、暗物质和中微子探测的新型量子传感器

IF 9.1 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR
S. Golwala, E. Figueroa-Feliciano
{"title":"用于光、暗物质和中微子探测的新型量子传感器","authors":"S. Golwala, E. Figueroa-Feliciano","doi":"10.1146/annurev-nucl-102020-112133","DOIUrl":null,"url":null,"abstract":"The fields of light dark matter and neutrino physics offer compelling signals at recoil energies of eV to even meV, well below the [Formula: see text] keV thresholds of many techniques currently employed in these fields. Sensing of such small energies can benefit from the emergence of so-called quantum sensors, which employ fundamentally quantum mechanical phenomena to transduce energy depositions into electrical signals. This review focuses on quantum sensors under development that will enhance and extend the search for “particle-like” interactions of dark matter or enable new measurements of neutrino properties in the coming years.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Quantum Sensors for Light Dark Matter and Neutrino Detection\",\"authors\":\"S. Golwala, E. Figueroa-Feliciano\",\"doi\":\"10.1146/annurev-nucl-102020-112133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fields of light dark matter and neutrino physics offer compelling signals at recoil energies of eV to even meV, well below the [Formula: see text] keV thresholds of many techniques currently employed in these fields. Sensing of such small energies can benefit from the emergence of so-called quantum sensors, which employ fundamentally quantum mechanical phenomena to transduce energy depositions into electrical signals. This review focuses on quantum sensors under development that will enhance and extend the search for “particle-like” interactions of dark matter or enable new measurements of neutrino properties in the coming years.\",\"PeriodicalId\":8090,\"journal\":{\"name\":\"Annual Review of Nuclear and Particle Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Nuclear and Particle Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-nucl-102020-112133\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102020-112133","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 1

摘要

光暗物质和中微子物理领域提供了令人信服的信号,其反冲能量为eV甚至meV,远低于这些领域目前使用的许多技术的keV阈值。这种小能量的传感可以从所谓的量子传感器的出现中受益,量子传感器基本上利用量子力学现象将能量沉积转化为电信号。这篇综述的重点是正在开发的量子传感器,它将增强和扩展对暗物质“类粒子”相互作用的搜索,或者在未来几年对中微子特性进行新的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Quantum Sensors for Light Dark Matter and Neutrino Detection
The fields of light dark matter and neutrino physics offer compelling signals at recoil energies of eV to even meV, well below the [Formula: see text] keV thresholds of many techniques currently employed in these fields. Sensing of such small energies can benefit from the emergence of so-called quantum sensors, which employ fundamentally quantum mechanical phenomena to transduce energy depositions into electrical signals. This review focuses on quantum sensors under development that will enhance and extend the search for “particle-like” interactions of dark matter or enable new measurements of neutrino properties in the coming years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.50
自引率
0.80%
发文量
18
期刊介绍: The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation. One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信