Demetra Tsiamis, Fabio Poretti, Stefano Consonni, Marco J. Castaldi
{"title":"A quantitative analysis of the US materials flow methodology and comparison to the EU methodology for MSW statistics","authors":"Demetra Tsiamis, Fabio Poretti, Stefano Consonni, Marco J. Castaldi","doi":"10.1007/s42768-023-00171-1","DOIUrl":"10.1007/s42768-023-00171-1","url":null,"abstract":"<div><p>The European Union (EU) and the United States (US) determine municipal solid waste (MSW) statistics differently. The EU applies a site-specific methodology that directly measures waste whereas the US employs a materials flow methodology that estimates MSW statistics indirectly based on production and recovery data from industries. This study dissects the materials flow methodology and presents quantitative materials flow Sankey diagrams for the primary MSW materials to highlight data gaps that can be addressed to improve the methodology’s accuracy. Private industry plastics data were applied to the materials flow methodology, and the results were within 10% of the plastics statistics reported by the US Environmental Protection Agency (US EPA). Drawbacks to the methodologies include EU measurement inaccuracies due to double-counting and not accounting for residual waste in the US. The latter may partially explain why landfilling tonnages reported by the US EPA were approximately 60% less than the tonnages reported by the Waste to Energy Research and Technology Council (WTERT) in its national MSW survey that applied the EU methodology in the US. Unlike the EU, there is no US national policy that requires states to measure and report state-level waste data to the US EPA. Future improvements in US MSW statistics rely heavily on the implementation of national policies to homogenize the measurement and collection of waste data from states.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"85 - 94"},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139475930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards a sustainable geoliner construction in landfills by potential blending of fly ash with kaolin clay alternative: a review with an insight to Indian scenario","authors":"Kshitij Kumar, Biswajit Paul","doi":"10.1007/s42768-023-00178-8","DOIUrl":"10.1007/s42768-023-00178-8","url":null,"abstract":"<div><p>Electricity generated through coal-based Thermal Power Plants (TPPs) has played a pivotal role in shaping modern civilization, revolutionizing industries, and improving the quality of life for billions of people worldwide. These TPPs contribute to about 37%–40% of the global energy requirements. Energy production, in turn, has a direct impact on the economy of any country. Apart from this boon to humankind, these TPPs combusting coal as their primary fuel also have specific environmental impacts, the major ones being water, air, and soil pollution due to unscientific disposal of high-quantity fly ash produced yearly. If we can put this ash to good use, it may assist us in mitigating the pollution caused by it. Although there are many conventional uses of fly ash, such as a pozzolanic material in the cement industry, more pathways need to be discovered to balance the high generation quantities with consumption. Therefore, a detailed description of its use in potential geoliner applications is presented in this article. A geoliner or a landfill liner acts as a virtually impenetrable layer to mitigate the leachate penetration into the underneath subsoil and groundwater, thus preventing contamination. There are presently some studies that support the use of only fly ash in such applications. Nevertheless, the properties of the geoliners using it are not so good to significantly mitigate environmental degradation owing to its high permeability and low densification tendency. The bentonite conventionally used has limited deposits and is mined intensively for its use as a natural sealant. Their deposits must also be conserved, and an alternative material that may serve similar application benefits, like bentonite, must be selected. The desired aim can be fulfilled if we blend this combustion residue with other suitable materials (such as kaolinite clay) with low permeability. Thus, the article focuses on the possibilities of blending fly ash with different clays for geoliner construction to improve the individual properties of fly ash. This will contribute to developing a scope for future scientific research in deploying these blends in natural membrane materials for various industries. Different types of geoliners that are designed to contain the disposed-off waste are also explained in detail. Additionally, a glimpse of the global fly ash market is put forward to depict its importance for various industries in this technologically advancing world. This article profoundly observes an overall environmental management aspect regarding waste utilization.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 2","pages":"243 - 258"},"PeriodicalIF":0.0,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00178-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siti Salwa Khamis, Hadi Purwanto, Hamzah Mohd Salleh, Alya Naili Rozhan, Mohamed Abdur Rahman, Mahammadsalman Warimani, Noor Alam
{"title":"Novel energy recovery from an integrated municipal solid waste and leachate treatment system","authors":"Siti Salwa Khamis, Hadi Purwanto, Hamzah Mohd Salleh, Alya Naili Rozhan, Mohamed Abdur Rahman, Mahammadsalman Warimani, Noor Alam","doi":"10.1007/s42768-023-00177-9","DOIUrl":"10.1007/s42768-023-00177-9","url":null,"abstract":"<div><p>Population growth, waste generation, and massive waste mismanagement have led to environmental catastrophe. Management of municipal solid waste (MSW) requires an efficient and sustainable integrated system. The integrated thermal processing of MSW is one of the best waste management techniques. In this study, energy analysis of MSW is carried out based on the material and energy balance of 2000 kg wet MSW, which contains 50% leachate. Once the leachate is removed, the dry MSW is sent for carbon content enhancement in carbonization to produce MSW-based char. Thereafter, the combustion of MSW-based char provided high heat and syngas to be used in a hydrothermal process for MSW leachate treatment. The result shows that the char fuel of MSW produces a sufficient amount of energy, 13501.29 MJ (84.55%), in the form of synthetic gas by-product, which has a big potential as an energy source. The novelty of the proposed integrated thermal system is to produce 84.55% synthetic gas by-product, which is used for electricity production, cooking, food, and heat energy for industrial purposes. The proposed applications of this paper offer insightful information for policymaking regarding novel MSW techniques, which are economical, energy-efficient, and environmentally friendly. Thus, it increases the effectiveness of MSW utilization.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"53 - 61"},"PeriodicalIF":0.0,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139062192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun Yuan Choo, Syariza Abdul-Rahman, Abdul Malek Yaakob, Emy E. A-Jalil
{"title":"Sustainable food waste management using modified fuzzy improved analytic hierarchy process: a study of Malaysia","authors":"Chun Yuan Choo, Syariza Abdul-Rahman, Abdul Malek Yaakob, Emy E. A-Jalil","doi":"10.1007/s42768-023-00176-w","DOIUrl":"10.1007/s42768-023-00176-w","url":null,"abstract":"<div><p>Food waste generation is a pressing issue that requires urgent attention and concerted efforts worldwide. The staggering amount of food wasted each year not only wastes valuable resources but also exacerbates environmental, economic, and social challenges. Food Waste Management (FWM) consists of a complex array of criteria and sub-criteria, and treatments which seems interdependent. There is a need to evaluate the FWM with the help of important criteria and sub-criteria and treatments to address this challenge. In this study, we identified four important criteria, 21 sub-criteria, and four alternatives of FWM for the case of Malaysia using the integrated approach of literature review and expert opinions. Further, we employed the approach of Modified Fuzzy Improved Analytical Hierarchy Process (IAHP) to corroborate the interrelationships among the identified criteria and sub-criteria, and their associated treatments. This study undertakes linear normalization methods to transform data into comparable numerical values and the Geometric Mean method to handle uncertainty in human judgments. Moreover, the Centroid method is employed to convert fuzzy weights into crisp sets for ease of interpretation. The results indicate that environmental is the most essential criterion, followed by social, economic, and technical. In addition, air and water pollution is identified as the most critical sub-criteria. Black Soldier Fly is discovered as the most sustainable FWM treatment, since it performs the best while meeting all the criteria and sub-criteria assessed. Sensitivity analysis demonstrates that the outputs from the proposed method are robust and reliable. The finding suggests a proper and robust approach to help decision-makers select suitable FWM treatments to tackle various criteria and alternatives especially when handling inconsistent and uncertain judgments during evaluation.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"63 - 84"},"PeriodicalIF":0.0,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ling Wang, Minghui Tang, Hongxian Li, Jiamin Ding, Juan Qiu, Shengyong Lu
{"title":"Enhancing mechanisms of N-doped biomass carbon on the vanadium-based catalyst for furan degradation at low temperature","authors":"Ling Wang, Minghui Tang, Hongxian Li, Jiamin Ding, Juan Qiu, Shengyong Lu","doi":"10.1007/s42768-023-00172-0","DOIUrl":"10.1007/s42768-023-00172-0","url":null,"abstract":"<div><p>Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) have attracted widespread concern due to their high toxicity, and their difficult manipulation in laboratories has made the research process tough. Thus, in our work, furan is selected as the model compound owing to the same structure of a central oxygenate ring. Although catalytic oxidation is regarded as an effective and applicable method for the abatement of PCDD/Fs, the synthesis of low-temperature catalysts is still a challenging problem in practical applications. Considering this situation, we prepared a novel V<sub>2</sub>O<sub>5</sub>/TiO<sub>2</sub> catalyst modified with N-doped hierarchical porous carbon (NHPC) via a wet impregnation method. The V/T-1%NHPC catalyst could achieve expectant low-temperature performances with 50% furan conversion at 150 °C and a complete conversion at 200 °C, which decreased 23 °C and 40 °C compared to the V/T catalyst respectively. Moreover, the addition of NHPC presented lifting chemical stability during long-time test. The addition of NHPC in V/T catalysts decreased the formation of crystalline V<sub>2</sub>O<sub>5</sub> and increased the percentages of V<sup>5+</sup> and O<sub>lat</sub>, which improved the utilization of vanadium ions and the catalytic activity. Simultaneously, the higher binding energy shift of O<sub>lat</sub> implied more reaction possibility with other oxidise reactants. Importantly, this work proved the lifting catalytic activity by the interaction between catalysts and NHPC, and proposed the promoting effects of the N element. The results showed that the content of the pyridinic N and graphitic N in NHPC changed after combining with V/T catalyst, which played crucial roles in the excellent catalytic performance. Overall, this work provides comprehensive research of the V/T-1%NHPC catalyst toward furan oxidation at low temperature and explain the effects of N-doped biomass carbon in catalytic activity clearly, which gave a new thought to design low-temperature catalysts in PCDD/Fs degradation. Besides, the internal functional mechanisms of N species are worth further exploration in future studies.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"1 - 9"},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138949497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rayed Alshareef, Robert Sait-Stewart, Mohamad A. Nahil, Paul T. Williams
{"title":"Three-stage pyrolysis–steam reforming–water gas shift processing of household, commercial and industrial waste plastics for hydrogen production","authors":"Rayed Alshareef, Robert Sait-Stewart, Mohamad A. Nahil, Paul T. Williams","doi":"10.1007/s42768-023-00173-z","DOIUrl":"10.1007/s42768-023-00173-z","url":null,"abstract":"<div><p>Five common single plastics and nine different household, commercial and industrial waste plastics were processed using a three-stage (i) pyrolysis, (ii) catalytic steam reforming and (iii) water gas shift reaction system to produce hydrogen. Pyrolysis of plastics produces a range of different hydrocarbon species which are subsequently catalytically steam reformed to produce H<sub>2</sub> and CO and then undergo water gas shift reaction to produce further H<sub>2</sub>. The process mimics the commercial process for hydrogen production from natural gas. Processing of the single polyalkene plastics (high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP)) produced similar H<sub>2</sub> yields between 115 mmol and 120 mmol per gram plastic. Even though PS produced an aromatic product slate from the pyrolysis stage, further stages of reforming and water gas shift reaction produced a gas yield and composition similar to that of the polyalkene plastics (115 mmol H<sub>2</sub> per gram plastic). PET gave significantly lower H<sub>2</sub> yield (41 mmol per gram plastic) due to the formation of mainly CO, CO<sub>2</sub> and organic acids from the pyrolysis stage which were not conducive to further reforming and water gas shift reaction. A mixture of the single plastics typical of that found in municipal solid waste produced a H<sub>2</sub> yield of 102 mmol per gram plastic. Knowing the gas yields and composition from the single plastics enabled an estimation of the yields from a simulated waste plastic mixture and a ‘real-world’ waste plastic mixture to be determined. The different household, commercial and industrial waste plastic mixtures produced H<sub>2</sub> yields between 70 mmol and 107 mmol per gram plastic. The H<sub>2</sub> yield and gas composition from the single waste plastics gave an indication of the type of plastics in the mixed waste plastic samples.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"25 - 37"},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00173-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Feng, Zhitong Yin, Qin Hong, Yiming Hu, Lintao Liu, Jun Wang, Qunxing Huang, Yonggang Zhou
{"title":"Atomization characteristics of pyrolysis oil derived from waste tires","authors":"Hong Feng, Zhitong Yin, Qin Hong, Yiming Hu, Lintao Liu, Jun Wang, Qunxing Huang, Yonggang Zhou","doi":"10.1007/s42768-023-00169-9","DOIUrl":"10.1007/s42768-023-00169-9","url":null,"abstract":"<div><p>The atomization characteristics play a key role in the highly efficient combustion of pyrolysis oil derived from waste tires. In this study, the fuel properties of tire pyrolysis oil (TPO) were initially studied, and then a high-speed camera and a phase Doppler particle analyzer were employed to characterize the atomization feature of TPO. The influence of pressure and nozzle orifice diameter on atomization characteristics such as spray angle, droplet velocity, and droplet size distribution was investigated. The results showed that TPO had a high calorific value of about 43.6 MJ/kg and a low viscosity of 3.84×10<sup>–6</sup> m<sup>2</sup>/s at 40 °C, which made it have the potential to be used as an alternative fuel. Higher pressure expanded the spray angle and extended the spray in both the axial and radial directions. With increasing pressure, spray angle and droplet velocity raised, and the increase in crushing effect of air reduced the Sauter mean diameter (<i>SMD</i>) of the droplets. To obtain proper atomization quality for combustion, the pressure is expected to be higher than 1.25 MPa. With increasing nozzle orifice diameter, droplet velocity increased, and the <i>SMD</i> of the droplets increased as well due to weakened crushing effect of the orifice. Therefore, the pressure must be increased to maintain the atomization quality when using a nozzle with a larger orifice. Due to the lower viscosity, the velocity and particle size distribution of TPO droplets after atomization were smaller than those of diesel droplets. The extremely small carbon black contained in TPO also contributed to the breaking of droplets and played a certain role in the size reduction of the oil droplets, but it may cause the risk of nozzle blockage. In summary, TPO showed great atomization characteristics for alternative fuel applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"39 - 52"},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-023-00169-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beneficial use of mussel shell as a bioadditive for TPU green composites by the valorization of an aqueous waste","authors":"Sedef Şişmanoğlu, Yasin Kanbur, Carmen-Mihaela Popescu, Diana Kindzera, Ümit Tayfun","doi":"10.1007/s42768-023-00165-z","DOIUrl":"10.1007/s42768-023-00165-z","url":null,"abstract":"<div><p>Scientific studies have focused on environmentally friendly solutions as effective as the reuse of crop products owing to plastic-waste problems in recent years. This issue is the main driving force for upcoming academic research attempts in waste valorization-related studies. Herein, we integrated an aqua-waste, mussel shell (MS), as a bioadditive form into green thermoplastic polyurethane (TPU) green composites. Tuning of the MS surface was performed to achieve strong adhesion between composite phases. The surface functionalities of MS powders were evaluated via infrared spectroscopy and scanning electron microscopy (SEM) images. Composite samples were prepared by melt-compounding followed by injection molding techniques. It was confirmed by morphological analysis that relatively better adhesion between the phases was achieved for composites involving surface-modified MS compared to unmodified MS. Tensile strength and Young’s modulus of surface-modified MS-filled composites were found to be higher than those of unmodified MS, whereas the elongation at break shifted to lower values with MS inclusions. The shore hardness of TPU was remarkably improved after being incorporated with silane-treated MS (AS-MS). Stearic acid-treated MS (ST-MS) additions resulted in an enhancement in the thermal stability of the composites. Thermo-mechanical analysis showed that the storage moduli of composites were higher than those of unfilled TPU. ST-MS additions led to an increase in the characteristic glass transition temperature of TPU. Melt flow index (MFI) of neat TPU was highly improved after MS loading regardless of modification type. According to the wear test, surface modification of MS displayed a positive effect on the wear resistance of TPU. As the water absorption data of the composites were evaluated, the TPU/AS-MS composite yielded the lowest water absorption. The silane layer on MS inclusion promoted water repellency of composites due to the hydrophobicity of silane. The results of the biodegradation investigation demonstrated that adding unmodified and/or modified MS to the TPU matrix increased the biodegradation rate. The test results at the end of a 7-week period of biodegradation with a soft-rot fungus implied that the composite materials were more biodegradable than pure TPU. Silane modification of MS exhibited better performance in terms of the characterized properties of TPU-based composites.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"123 - 137"},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An alternative approach to improve the compatibility of PCE in cement paste blend with coal gangue powder","authors":"Zonglin Xie, Yuxuan Li, Dahui Sun, Yi Tian, Jinyuan Hu, Qiang Yuan, Zheng Chen","doi":"10.1007/s42768-023-00174-y","DOIUrl":"10.1007/s42768-023-00174-y","url":null,"abstract":"<div><p>Coal gangue (CG) is an environmental waste that faces an urgent demand for disposal in China. The utilization of CG in construction materials has broad application prospects and gained increasing interest. However, the poor compatibility of polycarboxylate superplasticizer (PCE) with CG powder hinders its efficiency in a wide range of applications. Here, this paper attempts to improve the compatibility of PCE with CG powder in cement paste based on the regulation of aggregation and the adsorption behavior of PCE. Dynamic light scattering (DLS) and fluorescence spectroscopy tests were carried out to understand the improved mechanism. The results indicated that the addition of CG powder increases the ionic strengths of the cement liquid phase, which makes PCE tend to aggregate at a lower concentration compared with no CG powder introduction. Adding (CH<sub>3</sub>COO)<sub>2</sub>Cu is beneficial for enhancing the workability of cement paste by reducing PCE aggregation while maintaining the compressive strength of cement specimens. Therefore, (CH<sub>3</sub>COO)<sub>2</sub>Cu extra addition can be regarded as an effective and sustainable way to improve the workability of cement paste with CG powder.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"139 - 150"},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanjaya K. Mishra, Premananda Pradhan, Shakti P. Jena
{"title":"Performance and combustion study of a low heat rejection engine running with biogas–diethyl ether–diesel","authors":"Sanjaya K. Mishra, Premananda Pradhan, Shakti P. Jena","doi":"10.1007/s42768-023-00167-x","DOIUrl":"10.1007/s42768-023-00167-x","url":null,"abstract":"<div><p>The present research focuses on addressing the faster depletion of fossil fuels and environmental pollution in addition to the energy crisis that hinders the progress of a nation. In the current research, waste banana leaves were considered as substrates for biogas production. Biogas is taken as the primary fuel in dual fuel (DF) operations to maximize possible diesel savings. The performance and combustion assessment were executed in a low heat rejection (LHR) engine using 5% diethyl ether by volume blended with diesel (5DEE) as pilot fuel. The combustion attributes of the engine reveal that the apex of net heat release rate (NHRR) curve retarded a bit as compared to apex of base result. The peak cylinder pressure was noted to be 6.19 MPa in the LHR engine running with 5DEE + biogas at 11.7° crank angle (CA) after top dead center (aTDC) compared to 5.23 MPa for the diesel alone operation at the same position. The apex point for NHRR was observed to be 54.51 J (°)<sup>−1</sup> for 5DEE + biogas in LHR engine positioned at 3.2° aTDC. The brake thermal efficiency at full engine load operation decreased by 12.7% and 5.2% for biogas substitutions of 0.8 kg h<sup>−1</sup> with diesel and 5DEE, respectively, compared to the base result. The smoke opacity and nitric oxide emissions were reduced during the DF run accompanied by diethyl ether as a fuel additive.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 1","pages":"151 - 162"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134954233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}