Annals of Microbiology最新文献

筛选
英文 中文
Bioethanol production from sugarcane molasses by co-fermentation of Saccharomyces cerevisiae isolate TA2 and Wickerhamomyces anomalus isolate HCJ2F-19 利用分离自 TA2 的酿酒酵母和分离自 HCJ2F-19 的 Wickerhamomyces anomalus 共同发酵甘蔗糖蜜生产生物乙醇
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-04-03 DOI: 10.1186/s13213-024-01757-8
Estifanos Hawaz, Mesfin Tafesse, Anteneh Tesfaye, Solomon Kiros, Dereje Beyene, Gessesse Kebede, Teun Boekhout, Marizeth Groenwald, Bart Theelen, Ayantu Degefe, Sisay Degu, Alene Admasu, Biru Hunde, Diriba Muleta
{"title":"Bioethanol production from sugarcane molasses by co-fermentation of Saccharomyces cerevisiae isolate TA2 and Wickerhamomyces anomalus isolate HCJ2F-19","authors":"Estifanos Hawaz, Mesfin Tafesse, Anteneh Tesfaye, Solomon Kiros, Dereje Beyene, Gessesse Kebede, Teun Boekhout, Marizeth Groenwald, Bart Theelen, Ayantu Degefe, Sisay Degu, Alene Admasu, Biru Hunde, Diriba Muleta","doi":"10.1186/s13213-024-01757-8","DOIUrl":"https://doi.org/10.1186/s13213-024-01757-8","url":null,"abstract":"Co-culturing is a widely used method to improve bioethanol production from biomass enriched in fermentable sugars. This study aims to produce bioethanol from sugarcane molasses by simultaneous co-fermentation of S. cerevisiae isolate TA2 and W. anomalus isolate HCJ2F-19. Response surface methodology (RSM) based on the central composite design (CCD) was employed to optimize fermentation conditions, including mixing rate (110–150 rpm), temperature (25–35 °C), molasses concentration (25–35 obrix), and incubation time (36–72 h). The ethanol concentration was analyzed using HPLC equipped with a UV detector. The monocultureS. cerevisiae isolate TA2 produced 17.2 g.L−1 of ethanol, 0.33 g.g−1 of ethanol yield, and 0.36 g.L−1.h−1 of productivity compared to W. anomalus isolate HCJ2F that produced 14.5 g.L−1, 0.30 g.g−1 and 0.28 g.L−1.h−1 ethanol, ethanol yield, and productivity under laboratory conditions, respectively. In comparison to single cultures of S. cerevisiae TA2 and W. anomalus HCJ2F, the co-fermentation using both isolates showed an increased ethanol yield of 29% and 53% compared to the single species fermentations, respectively. The results showed that the growth of W. anomalus HCJ2F-19 and S. cerevisiae TA2 was not influenced by each other during the co-fermentation process. The one variable at a time optimization (OVAT) analysis resulted in an ethanol concentration of 26.5 g.L−1 with a specific yield and productivity of 0.46 g.g−1, 0.55 g.L−1.h−1, respectively, at pH 5.5, 25 obrix, 48 h, 150 rpm, 30 °C, 60:40 inoculum ratio, and 10% overall inoculum size. The maximum ethanol concentration of 35.5 g.L−1 was obtained by co-fermentation using the RSM-CCD tool at 30 obrix, 30 °C, 54 h, and 130 rpm. The results suggested that the co-fermentation of S. cerevisiae isolate TA2 and W. anomalus isolate HCJ2F improves bioethanol production from sugar cane molasses under optimum fermentation conditions.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140568495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber 甜椒秸秆生物炭对土壤微生物群落和连作黄瓜生长的影响
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-03-08 DOI: 10.1186/s13213-024-01755-w
Hengyu Li, Jie Lou, Xiaolu Chen, Yuwei Dou, Dalong Zhang, Min Wei
{"title":"Effects of sweet pepper straw biochar on soil microbial communities and growth of continuously cropped cucumber","authors":"Hengyu Li, Jie Lou, Xiaolu Chen, Yuwei Dou, Dalong Zhang, Min Wei","doi":"10.1186/s13213-024-01755-w","DOIUrl":"https://doi.org/10.1186/s13213-024-01755-w","url":null,"abstract":"This study evaluates biochar from crop residues as a solution to soil degradation in continuous monoculture within greenhouse agriculture, focusing on its impact on soil microbial communities and cucumber plant growth. We analyzed biochar derived from tomato straw (TSB), sweet pepper straw (SPSB), and eggplant straw (ESB), assessing their nutrient content, cation exchange capacity, and adsorption rates. This study examined the effects of three concentrations (2.5%, 5%, and 7.5% w/w) of the more promising SPSB on soil properties and cucumber growth. SPSB showed significantly higher levels of nitrogen, phosphorus, and potassium, along with superior adsorption capacity compared to TSB and ESB. The 5% w/w SPSB concentration notably improved cucumber growth, increasing plant height by 13.01%, stem thickness by 20.79%, leaf area by 50.26%, and dry weight by 58.56% relative to the control. High-throughput sequencing revealed this concentration significantly altered soil microbial community structure, enhancing bacterial and fungal diversity. It increased beneficial bacterial groups (Firmicutes, Actinobacteria, Bacillus) and modified fungal communities, with a decrease in Ascomycota and Aspergillus and shifts in Penicillium abundance. Functional genomic analysis indicated enrichment in bacterial metabolic pathways and fungal replication and expression genes. SPSB, especially at a 5% w/w concentration, emerges as an effective soil amendment in greenhouses affected by continuous monoculture. This approach represents a sustainable method to enhance soil health and crop productivity.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140070076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Molecular diversity and spore density of indigenous arbuscular mycorrhizal fungi in acid sulfate soil in Thailand 更正:泰国酸性硫酸盐土壤中本地丛枝菌根真菌的分子多样性和孢子密度
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-03-01 DOI: 10.1186/s13213-024-01756-9
Masao Higo, Katsunori Isobe, Dong-Jin Kang, Tomiya Maekawa, Ryuichi Ishii
{"title":"Correction: Molecular diversity and spore density of indigenous arbuscular mycorrhizal fungi in acid sulfate soil in Thailand","authors":"Masao Higo, Katsunori Isobe, Dong-Jin Kang, Tomiya Maekawa, Ryuichi Ishii","doi":"10.1186/s13213-024-01756-9","DOIUrl":"https://doi.org/10.1186/s13213-024-01756-9","url":null,"abstract":"<p><b>Correction: Annals of Microbiology 61, 383–389 (2011)</b></p><p><b>https://doi.org/10.1007/s13213-010-0142-0</b></p><p>Following publication of the original article (Higo et al. 2011), the authors reported a typo and misdescription of the weed plant’s name in Fig. 2. The names of the plants in Fig. 2 were in the wrong order.</p><p>The incorrect caption is: Fig. 2 Indigenous plants species inhabiting the ASS. <b>a </b><i>Digitaria</i> sp., <b>b </b><i>Fimbristylis</i> sp., <b>c </b><i>Mimosa pudica L.</i>, <b>d </b><i>Sesbania</i> sp., <b>e</b><i>Wedelia</i> sp.</p><p>The correct caption is: Fig. 2 Indigenous plants species inhabited in ASS. <b>a</b>: <i>Fimbristylis</i> sp., <b>b</b>: <i>Mimosa pudica L.</i>, <b>c</b>: <i>Sesbania</i> sp., <b>d</b>: <i>Digitaria</i> sp., <b>e</b>: <i>Wedelia</i> sp.</p><p>The original article (Higo et al. 2011) has been updated.</p><ul data-track-component=\"outbound reference\"><li><p>Higo M, Isobe K, Kang DJ et al (2011) Molecular diversity and spore density of indigenous arbuscular mycorrhizal fungi in acid sulfate soil in Thailand. Ann Microbiol 61:383–389. https://doi.org/10.1007/s13213-010-0142-0</p><p>Article Google Scholar </p></li></ul><p>Download references<svg aria-hidden=\"true\" focusable=\"false\" height=\"16\" role=\"img\" width=\"16\"><use xlink:href=\"#icon-eds-i-download-medium\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"></use></svg></p><h3>Authors and Affiliations</h3><ol><li><p>College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan</p><p>Masao Higo, Katsunori Isobe &amp; Ryuichi Ishii</p></li><li><p>Teaching and Research Center for Bio-coexistence, Hirosaki Universty, 84-133 Kanagi-machi, Aomori, 037-0202, Japan</p><p>Dong-Jin Kang</p></li><li><p>National Agricultural Research Center, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8666, Japan</p><p>Tomiya Maekawa</p></li></ol><span>Authors</span><ol><li><span>Masao Higo</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Katsunori Isobe</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Dong-Jin Kang</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Tomiya Maekawa</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li><li><span>Ryuichi Ishii</span>View author publications<p>You can also search for this author in <span>PubMed<span> </span>Google Scholar</span></p></li></ol><h3>Corresponding author</h3><p>Correspondence to Katsunori Isobe.</p><h3>Publisher’s Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p><p>The online version of the original article can be found at https://doi.org/10.1007/s13213-010-01","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Isolation and characterization of coliphages from different water sources and their biocontrol application combined with electron beam irradiation for elimination of E. coli in domestic wastewater 从不同水源中分离大肠杆菌并确定其特征,将其生物控制应用与电子束辐照相结合以消除生活废水中的大肠杆菌
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-02-22 DOI: 10.1186/s13213-024-01754-x
Reham Fathy, Amal S. Eid, Ali A. Hammad, Salwa A. Abou El-Nour
{"title":"Isolation and characterization of coliphages from different water sources and their biocontrol application combined with electron beam irradiation for elimination of E. coli in domestic wastewater","authors":"Reham Fathy, Amal S. Eid, Ali A. Hammad, Salwa A. Abou El-Nour","doi":"10.1186/s13213-024-01754-x","DOIUrl":"https://doi.org/10.1186/s13213-024-01754-x","url":null,"abstract":"Antibiotic-resistant bacteria, including Escherichia coli (E. coli), are high-risk waterborne pathogens that pose a vital threat to the general public’s health. Therefore, this study aims to develop alternative and affordable treatment approaches. Coliphage treatment is an economically and environmentally sustainable method for eliminating pathogenic bacteria. A significant step toward improving germicidal effectiveness might be to combine coliphage with electron beam treatment. Twelve isolated E. coli were used as host bacteria. In addition, eleven coliphages were isolated and characterized to determine their suitable host range and lytic activities. Antibiotic resistance was tested to detect the most antimicrobial-resistant E. coli isolates. Results indicated that E. coli-2 and E. coli-10 were the most resistant bacterial isolates. Both somatic coliphage-3 (S3) and F-specific coliphage-3 (F3) were the most active lytic coliphages. Based on transmission electron microscope analysis, S3 was classified as a member of the Myoviridae family, while F3 belonged to the Leviviridae family. Genome types were detected; the S3 genome was a linear double-stranded DNA virus, while the F3 genome was a single-strand RNA virus. The adjustment of pH to 7 and temperature to 38 °C increased coliphage activity by 32.2% for S3 and 14% for F3. The optimum multiplicity of infection (MOI) for S3 was 1:1 and 2:1 for F3. From the one-step growth curve, both the latent periods of S3 and F3 were estimated to be 30 and 20 min, and the burst sizes showed 5.8 and 4.6 (PFU)/infected cells, respectively. The D10 values of the most two antimicrobial-resistant strains (E. coli-2 and E. coli-10) were calculated, showing nearly identical values (0.37 and 0.38 kGy), respectively. Both coliphages were used, either alone or in combination with electron beam irradiation (EBI), to eradicate the most multidrug-resistant E. coli in domestic wastewater. EBI reduced the counts of E. coli-2 and -10 by 59% and 65%, respectively. While the combination of coliphages and EBI completely eradicated these microbes. Combination of each individual coliphage and EBI decreased the growth of E. coli in domestic wastewater to an undetectable level. ","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139917527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comprehensive analysis of metabolites in the mycelium of Cordyceps fumosorosea cultured on Periplaneta americana 综合分析在美国蕨类植物上培养的冬虫夏草菌丝体中的代谢物
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-02-05 DOI: 10.1186/s13213-024-01752-z
Tahir Khan, Hou Dong-Hai, Jin-Na Zhou, Yin-Long Yang, Hong Yu
{"title":"Comprehensive analysis of metabolites in the mycelium of Cordyceps fumosorosea cultured on Periplaneta americana","authors":"Tahir Khan, Hou Dong-Hai, Jin-Na Zhou, Yin-Long Yang, Hong Yu","doi":"10.1186/s13213-024-01752-z","DOIUrl":"https://doi.org/10.1186/s13213-024-01752-z","url":null,"abstract":"Cordyceps fumosorosea is one of the common species within the Cordyceps genus, which are cultured on Periplaneta americana. This study aimed to determine the composition of bioactive compounds, including β-glucans, polysaccharides, cordycepic acid, flavonoids, ergosterol, and nitrogenous compounds (specifically nucleosides: adenosine, guanosine, adenine, and hypoxanthine), present in the mixture and mycelium at various time incubation. Different bioactive compounds, including β-1,3-glucan, polysaccharides, cordycepic acid, flavonoids, ergosterol, and nitrogenous compounds (specifically nucleosides: adenosine, guanosine, adenine, and hypoxanthine) are detected from C. fumosorosea which cultured on P. americana by UV and HPLC. Mycelia of C. fumosorosea were cultivated in P. americana (medium). The highest total β-1,3-glucan content was observed in the mixture (C. fumosorosea + P. americana) after 25 days (69.21 ± 0.07 mg/g) and in the mycelium after 25 days (56.32 ± 0.39 mg/g) using different solvents. The highest β-1,3-glucan content was attained at specific time incubation in other solvents. The content of cordycepic acid peaked at 52.28 ± 0.11 mg/g in the mixture after 25 days and at 46.96 ± 0.13 mg/g in the mycelium after 25 days. The polysaccharide content reached its highest level in the mixture after 20 days (16.68 ± 0.38 mg/g) and in the mycelium after 20 days (14.85 ± 0.10 mg/g). The peak flavonoid content was observed in the mixture after 25 days (4.65 ± 0.24 mg/g) and in the mycelium after 25 days (4.04 ± 0.07 mg/g). Nucleosides, including adenine, adenosine, hypoxanthine, and guanosine, exhibited their highest levels after 25 days in the mixture and mycelium. Ergosterol content peaks at 25 days (2.25 ± 0.04 mg/g). Cordyceps fumosorosea mixture and time incubation of 20 and 25 days are optimal for detecting a diverse array of bioactive compounds, including β-1,3-glucan, polysaccharides, cordycepic acid, flavonoids, ergosterol, and nucleosides.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139689439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Process analysis of the anaerobe Phocaeicola vulgatus in a shake flasks and fermenter reveals pH and product inhibition 厌氧菌 Phocaeicola vulgatus 在摇瓶和发酵罐中的过程分析揭示了 pH 值和产品抑制作用
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-01-26 DOI: 10.1186/s13213-023-01745-4
Laura Keitel, Katharina Miebach, Lea Rummel, Stanislav Yordanov, Jochen Büchs
{"title":"Process analysis of the anaerobe Phocaeicola vulgatus in a shake flasks and fermenter reveals pH and product inhibition","authors":"Laura Keitel, Katharina Miebach, Lea Rummel, Stanislav Yordanov, Jochen Büchs","doi":"10.1186/s13213-023-01745-4","DOIUrl":"https://doi.org/10.1186/s13213-023-01745-4","url":null,"abstract":"The anaerobic gut bacterium Phocaeicola vulgatus (formerly Bacteroides vulgatus) has a significant role in the human gut microbiome. It can produce bioactive compounds with antimicrobial properties and industrially relevant organic acids like succinate. However, there is a knowledge gap in understanding the metabolism of P. vulgatus, as cultivation of anaerobic gut bacteria is challenging and usually conducted with enriched microbiota cultures. We aim to close this gap by characterizing this anaerobe bacterium in different cultivation conditions and scales. In this work, axenic cultures were studied in a shake flask and 2 L fermenter scale to characterize the influence of initial pH, buffer concentration, osmolality, and product inhibition on growth and organic acid production by P. vulgatus. Both cultivation systems had online gas measurements for total gas and CO2 production. HPLC analysis generated closed carbon balances, accounting for all produced acids. Total gas transfer rates and CO2 transfer rates revealed that 65% of produced gas was attributed to H2, while just 35% was connected to CO2 production. A minimum buffer concentration of 50 mM MOPS and an initial pH of 7.3 were identified to mitigate pH inhibition in P. vulgatus cultivations with a defined minimal medium and glucose as substrate. The initial addition of lactate showed an inhibitory effect, starting at a concentration of 1 g L−1. On the contrary, initial acetate addition was beneficial for organic acid production. A comparison of a pH-buffered and a pH-controlled 2 L fermentation demonstrated a switch in acid production toward succinate under pH control. The study provides insight into improved cultivation conditions for the gut bacterium P. vulgatus and demonstrates a successful scale-up from the shake flask to the 2 L bioreactor. By applying pH control in the bioreactor, growth was increased, and the organic acid production was switched from lactate to succinate. Even though P. vulgatus could serve as a production organism for interesting bioactive compounds and organic acids, further characterization and improvement are necessary to improve titers.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139590267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protective effects of SCFAs on organ injury and gut microbiota modulation in heat-stressed rats SCFA 对热应激大鼠器官损伤和肠道微生物群调节的保护作用
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-01-26 DOI: 10.1186/s13213-023-01746-3
Zhan Yang, Chengliang Tang, Xuewei Sun, Zihan Wu, Xiaojing Zhu, Qian Cui, Ruonan Zhang, Xinrui Zhang, Yunxin Su, Yinghua Mao, Chunhui Wang, Feng Zheng, Jin Zhu
{"title":"Protective effects of SCFAs on organ injury and gut microbiota modulation in heat-stressed rats","authors":"Zhan Yang, Chengliang Tang, Xuewei Sun, Zihan Wu, Xiaojing Zhu, Qian Cui, Ruonan Zhang, Xinrui Zhang, Yunxin Su, Yinghua Mao, Chunhui Wang, Feng Zheng, Jin Zhu","doi":"10.1186/s13213-023-01746-3","DOIUrl":"https://doi.org/10.1186/s13213-023-01746-3","url":null,"abstract":"This research was conducted to investigate the potential of short-chain fatty acids (SCFAs) in protecting organs from heat stress-induced injuries and gut microbiota modulation. Sprague–Dawley rats were randomly assigned to various groups including a control group, a room temperature training group, a hyperthermia training group, SCFAs pretreatment group, and recipients received feces from the HT group. After strenuous training at high temperatures, the levels of plasma enzymes AST, ALT, BUN, and Cr were evaluated. The changes in gut microbiota and fecal metabolites were detected using 16S rRNA sequencing and GC–MS methods. Pathological examination of colon and liver tissues was conducted, and immunohistochemical techniques were employed to assess intestinal barrier function. The findings indicate that SCFAs hold the potential for mitigating liver and colon damage caused by heat stress. With the intervention of SCFAs, there were observable changes in the structure and metabolites of the intestinal microbiota, as well as improvements in intestinal barrier function. Further support for the benefits of SCFAs was found through fecal microbiota transplantation, which demonstrated that modified gut microbiota can effectively reduce organ damage. This study provides evidence that SCFAs, as metabolites of the gut microbiota, have a valuable role to play in regulating gut health and mitigating the harmful effects of heat stress.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological filtering and phylogeographic structuring of Psychrilyobacter within two closely related limpet species from the Southern Ocean 南大洋两个密切相关的跛足类动物体内的心理细菌的生态过滤和系统地理结构
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-01-26 DOI: 10.1186/s13213-024-01751-0
Guillaume Schwob, Sebastián Rosenfeld, Claudio González-Wevar, Julieta Orlando
{"title":"Ecological filtering and phylogeographic structuring of Psychrilyobacter within two closely related limpet species from the Southern Ocean","authors":"Guillaume Schwob, Sebastián Rosenfeld, Claudio González-Wevar, Julieta Orlando","doi":"10.1186/s13213-024-01751-0","DOIUrl":"https://doi.org/10.1186/s13213-024-01751-0","url":null,"abstract":"The ecological interdependence between macroorganisms and their microbial communities promotes stable associations over time, potentially leading to their evolutionary co-diversification. The detection of intricate eco-evolutionary interactions between animals and their microbiota is challenging, primarily due to complex bacterial communities related to poorly resolved host population structure. Strikingly, co-diversification in invertebrates, characterized by generally less complex microbiota, remains largely unexplored. Here, we compared the bacterial communities associated with two distinct lineages of Nacella limpets, a dominant shallow water patellogastropod of the Southern Ocean shores with a well-described population structure. Our goals were to elucidate the uniqueness of Nacella microbiota, resulting from an ecological filter that selectively favors certain bacterial taxa. Additionally, we aimed to depict the genetic structure of bacterial symbiont seeking evidence of co-diversification with Nacella. We sequence the V4-V5 regions of the bacterial 16S rRNA gene in three distinct microenvironments associated with Nacella: rock substrate, radula, and whole intestine. These samples were collected from two populations of Nacella deaurata and Nacella concinna, located in the West Antarctic Peninsula and Falkland/Malvinas Islands, respectively. We assessed ecological filtering patterns in the limpet microbiota, uncovering unique bacterial communities in both radulas and intestines, with specifically enriched bacterial taxa compared to the surrounding environment. By examining microdiversity patterns of core bacterial taxa, we revealed a deep phylogeographic structure of Psychrilyobacter in Nacella intestines. We highlight the Southern Ocean limpets of the Nacella genus as a novel and promising model for studying co-diversification between marine mollusks and their resident microbiota.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139578650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sphingobium sp. V4, a bacterium degrading multiple allelochemical phenolic acids 降解多种等位化学酚酸的 Sphingobium sp.
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-01-23 DOI: 10.1186/s13213-024-01750-1
Chunyang Zhang, Shuping Liu, Qingying Guo, Demin Li, Zelin Li, Qinyuan Ma, Hong Liu, Qian Zhao, Hongliang Liu, Zhongfeng Ding, Weihua Gong, Yuhao Gao
{"title":"Sphingobium sp. V4, a bacterium degrading multiple allelochemical phenolic acids","authors":"Chunyang Zhang, Shuping Liu, Qingying Guo, Demin Li, Zelin Li, Qinyuan Ma, Hong Liu, Qian Zhao, Hongliang Liu, Zhongfeng Ding, Weihua Gong, Yuhao Gao","doi":"10.1186/s13213-024-01750-1","DOIUrl":"https://doi.org/10.1186/s13213-024-01750-1","url":null,"abstract":"Continuous cropping challenges constrain the development of agriculture. Three main obstacles limit continuous cropping: autotoxicity of plant allelochemicals, deterioration of physicochemical characteristics of soil, and microflora imbalance. Plant-derived phenolic acids can cause autotoxicity, which is considered the main factor mediating continuous cropping obstacles. Reducing the phenolic acids in continuous cropping soils can decrease the autotoxicity of phenolic acids and ameliorate continuous cropping obstacles. Therefore, it is important to study the microbial resources that degrade allelochemical phenolic acids. Thus, the bacterial strain V4 that can degrade phenolic acids was isolated, identified, and genomically analyzed. Strain V4 isolated from strawberry soil using vanillic acid-mineral agar was identified as a Gram-negative short rod bacterium. Subsequent 16S rRNA phylogenetic analysis revealed that V4 clustered with members of the genus Sphingobium. The most closely related species were Sphingobium lactosutens DS20T (99% similarity) and Sphingobium abikonense NBRC 16140T (97.5% similarity). V4 also shared > 95% sequence similarity with other members of Sphingobium, so Sphingobium sp. V4 was named accordingly. Biochemical tests revealed that the biochemical characteristics of Sphingobium sp. V4 were similar to its most similar strains except for some properties. Sphingobium sp. V4 effectively degraded vanillic acid, ferulic acid, p-coumaric acid, p-hydroxybenzoic acid, and syringic acid. V4 grew best at the conditions of 30 °C, pH 6.0–7.0, and 0–0.05% NaCl. 500 mg/L vanillic acid was completely degraded by V4 within 24 h under the optimal conditions. Whole genome analysis showed that Sphingobium sp. V4 contained one chromosome and three plasmids. Two genes involved in vanillic acid degradation were found in the V4 genome: the gene encoding vanillate O-demethylase oxidoreductase VanB on the chromosome and the gene encoding vanillate monooxygenase on a large plasmid. The organization of vanillate catabolic genes differed from the adjacent organization of the genes, encoding vanillate o-demethylase VanA and VanB subunits, in Pseudomonas and Acinetobacter. The isolated bacterium Sphingobium sp. V4 degraded multiple phenolic acids. Its properties and genome were further analyzed. The study provides support for further investigation and application of this phenolic acid-degrading microorganism to alleviate continuous cropping obstacles in agriculture.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139560801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response of rhizosphere soil physicochemical properties and microbial community structure to continuous cultivation of tobacco 根圈土壤理化性质和微生物群落结构对烟草连续种植的响应
IF 3 4区 生物学
Annals of Microbiology Pub Date : 2024-01-22 DOI: 10.1186/s13213-023-01748-1
Bo Gong, Yi He, Zhenbao Luo, Huawei Peng, Heqing Cai, Yuening Zhu, Jun Bin, Mengjiao Ding
{"title":"Response of rhizosphere soil physicochemical properties and microbial community structure to continuous cultivation of tobacco","authors":"Bo Gong, Yi He, Zhenbao Luo, Huawei Peng, Heqing Cai, Yuening Zhu, Jun Bin, Mengjiao Ding","doi":"10.1186/s13213-023-01748-1","DOIUrl":"https://doi.org/10.1186/s13213-023-01748-1","url":null,"abstract":"The health of rhizosphere soil microorganisms is an important indicator to evaluate soil quality. Therefore, understanding the response of rhizosphere soil microorganisms to tobacco crop succession is crucial for promoting the sustainable development of agriculture. The microbial diversity and community structure of rhizosphere soil in continuous cropping and non-cropped tobacco for 7 years were analyzed by the Illumina platform. (1) Continuous cropping tobacco cause rhizosphere soil acidification and reduction in alkaline nitrogen (AN) and soil organic matter (SOM). (2) Continuous cropping tobacco reduces the diversity of rhizosphere soil microbial communities, increasing harmful functional microorganisms and declining beneficial ones. (3) The abundance of bacteria that perform nitrification and saprophytic fungi in the rhizosphere soil of continuous cropping areas decreases, inhibiting carbon and nitrogen cycling processes. (4) The composition and diversity of the soil rhizosphere microbial community are affected by the imbalance in the physicochemical property of the rhizosphere. Continuous cropping tobacco cause rhizosphere soil acidification and nutrient imbalance, and the carbon and nitrogen cycles involved in microorganisms were damaged. Furthermore, the decreased diversity of rhizosphere soil microorganisms and the increased abundance of pathogenic fungi contribute to the continuous cropping obstacles of tobacco.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":null,"pages":null},"PeriodicalIF":3.0,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信