{"title":"Oxidative stress-responsive hydrogen sulfide-releasing composite hydrogel for refractory diabetic wounds repair","authors":"Jingyue Wang, Yilei Ding, Jianan Liu, Yian Chen, Yuanfeng Wang, Ansha Zhao","doi":"10.1016/j.apmt.2024.102387","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102387","url":null,"abstract":"While revascularization is acknowledged as a critical process in wound healing, the scenario becomes more complex when considering diabetic wounds. In such cases, oxidative stress introduces two primary challenges that impede the healing process: ensuring the directional movement of functional cells to the wound site and combating the heightened risk of infection. These challenges underscore the need for innovative therapeutic strategies that can effectively address these restrictions in the context of diabetic wound healing. Hydrogen sulfide (HS) acts as a signaling gas and shows significant therapeutic potential in biomedical research. In this study, we encapsulate Allicin, a natural HS donor, in selenium micelles that specifically respond to oxidative stress. To create the GMA (Allicin@Micelle-GelMA) Composite hydrogel system, we utilize Methacrylic anhydride gelatin (GelMA) hydrogel as a matrix and form it through in-situ light curing. This composite system effectively addresses the problem of healing deep, narrow, and lengthy wounds that pose a challenge, as well as preventing nonspecific sudden release of HS. Additionally, the composite hydrogel system promotes angiogenesis, anti-inflammatory, antibacterial, and antioxidant properties. It also facilitates the directional movement of stem cells and macrophages, as demonstrated through the chicken embryo chorioallantoic membrane vascular test and the establishment of a diabetes wound model that is difficult to heal. Consequently, we conclude that the GMA composite hydrogel has the potential to serve as a versatile skin wound dressing that can effectively respond to oxidative stress.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"2 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G.G. Goviazin, D.A. Goldstein, B. Ratzker, O. Messer, M. Sokol, D. Rittel
{"title":"MAX phases: Unexpected reactivity under impact","authors":"G.G. Goviazin, D.A. Goldstein, B. Ratzker, O. Messer, M. Sokol, D. Rittel","doi":"10.1016/j.apmt.2024.102389","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102389","url":null,"abstract":"This study reveals that MAX phase materials can exhibit extraordinary reactivity when subjected to impact loading. This previously unknown behavior was discovered and examined in a case study of TiSiC subjected to Split Hopkinson pressure bar (SHPB) testing. The employed methodology integrated SHPB coupled with thermal measurements and ex-situ spectroscopic analysis, yielding crucial quantitative insights into MAX phase reactivity and mechanical impact response. We observed a substantial release of high energy in the form of elevated temperatures upon impact and disintegration of the MAX phase. Surprisingly, it was found that oxidation, usually the prominent contributor to reactivity, only plays a secondary role. Instead, microstructural transformation emerges as the primary source of energy release. It is postulated that the transformative kinetic mechanism involves rapid kinking, delamination, and bond breakage within the bulk material. These findings shed light on the fundamental energetics of MAX phases and highlight their potential as versatile reactive structural materials.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"131 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junshan Hu, Bin Duan, Jiancheng Yao, Tian Luo, Yuxiang Wu, Fengyi Wang, Tong Liu, Changchun Ding, Qunchao Fan, Hao Fu
{"title":"Multimodal anti-counterfeiting and optical storage application based on luminescence reversible modification and color change of photochromic phosphor","authors":"Junshan Hu, Bin Duan, Jiancheng Yao, Tian Luo, Yuxiang Wu, Fengyi Wang, Tong Liu, Changchun Ding, Qunchao Fan, Hao Fu","doi":"10.1016/j.apmt.2024.102392","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102392","url":null,"abstract":"Reversible upconversion luminescence (RUCL) modification based on photochromism has received considerable interest due to its potential applications in optical storage and invisible optical anti-counterfeiting. Herein, white β-BaScAlO: Yb, Er (β-BSAO-YE) phosphor was irradiated with 254 nm light, which caused the phosphor to turn blue due to the increase of oxygen vacancy. The blue β-BSAO-YE phosphor returns to its original color upon stimulation with 808 nm laser light or 125 °C, exhibiting a double photo-induced reversible photochromic change. The green and red upconversion luminescence (UCL) of the β-BSAO-YE were reversibly modified according to their photochromic properties. The UCL modification changes the luminescence color of the pattern, indicating that β-BSAO-YE phosphor is an ideal compound anti-counterfeit agent. The light information recorded on the β-BSAO-YE binary photochromic dot matrix can be read under ultraviolet (UV) and near-infrared (NIR) excitation, demonstrating the potential application of β-BSAO-YE phosphors as optical data storage media. In addition, the cyclic experiment showed good photochromic and UCL modulation repeatability. The new luminescent β-BSAO-YE not only proposes a new way to exploring upconversion red light materials, but also provides new materials for optical storage, optical information and optical anti-counterfeiting.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"13 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Roberto Bernasconi, Anna Nova, Buse Aktas, Salvador Pané, Luca Magagnin
{"title":"Inkjet assisted electroforming and collective actuation of disk-shaped magnetic micromotors","authors":"Roberto Bernasconi, Anna Nova, Buse Aktas, Salvador Pané, Luca Magagnin","doi":"10.1016/j.apmt.2024.102365","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102365","url":null,"abstract":"Microrobotic swarms, with their intrinsic ability to multiply the properties of a single device by hundreds or thousands of times, demonstrate great potential for advanced microsurgery, targeted drug delivery or manipulation at the microscale. This is especially true in the case of magnetically actuated swarms, which can be remotely manipulated with high precision also in-vivo. The manufacturing and the collective actuation of a large number of devices, however, is a challenging task and it requires the development of highly tailored, adaptable and low cost strategies. In the present work, we demonstrate that a combination of inkjet assisted lithography (IAL) and electroforming can be a high-throughput, scalable and low-cost fabrication method for the production of disk-shaped ferromagnetic micromotors. Thanks to the versatility of the hybrid manufacturing technique developed, the diameter and the thickness of the devices can be easily controlled and tailored according to the target application. In addition, the use of electroforming makes possible the manufacturing of soft or hard magnetic devices, whose magnetization direction can be programmed. In the specific case, Ni and CoNiP devices were produced, characterized and actuated in swarms composed of hundreds of individuals. According to their magnetic properties, the devices exhibited highly controllable actuation patterns with multiple degrees of freedom. In order to provide an applicative perspective, the ferromagnetic micromotors were coated with polypyrrole and employed for drug delivery, evidencing thus their capability to load and release the model molecule Rhodamine B.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"19 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electric wind induced texturing for enhanced thermoelectric performance of p-type Mg3Sb2-based materials","authors":"Qiang Zhang, Yingpeng Gao, Hongyao Xie, Peifeng Ren, Zhaohui Shan, Jianfeng Fan","doi":"10.1016/j.apmt.2024.102391","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102391","url":null,"abstract":"High-intensity electric pulse treatment (EPT) can induce electric wind effect in materials, which facilitates the grain rearrangement and reorientation in polycrystalline samples. For the first time, this study employed the EPT technique to construct texture in MgAgSb bulk compounds, and a highly conductive channel was produced to promote the charge carrier transport. This leads to a 53 % improvement in carrier mobility of the EPT sample (4#20) over the pristine one at room temperature. Additionally, EPT does not affect the carrier concentration of the material, making the EPT samples possess significantly improved electrical conductivities and untouched Seebeck coefficients. Consequently, a 36 % improvement in value is achieved for the EPT sample (4#20) at 723 K, compared to the pristine one. This work demonstrates that EPT technique is an effective approach for constructing textured MgSb-based materials, offering a valuable avenue for high thermoelectric performance in other potential materials manipulating properties-related texture.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"80 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ZnFe2O4 substituted with Cu atoms for ultra-efficient formation of sulfate radicals: Extremely low catalyst dosage for thiamethoxam degradation","authors":"Yuan Gao, Lian-Peng Li, Si-Yan Gong, Jia-Hui Huang, Shuo Xiang, Gan He, Qiong-Yu Wang, Mian Hu, Junliang Wang, Zhiyan Pan, Zhong-Ting Hu","doi":"10.1016/j.apmt.2024.102390","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102390","url":null,"abstract":"Neonicotinoids as one of the newest major class of insecticides is a kind of persistent pollutants. Herein, copper-substituted zinc ferrites (CuZnFeO) prepared in subcritical aqueous solution has a nanosize of ∼2 nm with high crystallinity and strong magnetic property. At low catalyst dosage of 0.05 g L, peroxymonosulfate (PMS) can be effectively converted into sulfate radicals in CuZnFeO/PMS system. Thiamethoxam (THIA) degradation rate is in the order of CuZnFeO > CuFeO > ZnFeO (124, 84, 21 × 10 min, respectively). At pH ∼7.0, THIA degradation efficiency can be over 99 % in 40 min. The radical species (, HO, SO and O) were demonstrated by EPR spectra using probe molecules. The majority effects in CuZnFeO/PMS system with kinetics modelling were comprehensively investigated as well. This work provides that multi-metal coupling, , Cu(Ⅰ)/Cu(Ⅱ) & Fe(Ⅱ)/Fe(Ⅲ), in spinel structure by polyhedral design is an effective strategy for enhancing the catalytic activity. The CuZnFeO/PMS system has promising for water treatment of neonicotinoid insecticide with ease of recycling catalysts by magnetic separation.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"10 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cisplatin and ionic redox pairs co-delivery gelatin/hyaluronic acid hydrogels with amplified chemotherapy/chemodynamic tumor therapy","authors":"Shuhan Chen, Ru Xu, Panpan Huo, Junyu Liu, Dongdong Zhang, Jiajun Qiu, Xuanyong Liu","doi":"10.1016/j.apmt.2024.102388","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102388","url":null,"abstract":"The tumor therapeutic efficacy of cisplatin as a chemotherapy drug and nanomaterial as a chemodynamic inducer are inhibited by the high levels of glutathione (GSH) and hypoxia within the tumor microenvironment. Herein, an injectable nanocomposite hydrogel platform is designed via encapsulating calcined MgMnFe-layered double hydroxide (LDH250) nanosheets and cisplatin into gelatin/hyaluronic acid double-crosslinked hydrogel. As an inducer of Fenton/Fenton-like reactions, LDH250 nanosheets exhibit multiple redox cycling pairs (Mn/Mn/Mn, Fe/Fe) capable of generating abundant reactive oxygen species (ROS), which synergizes with cisplatin to kill tumor cells effectively. Apart from this, the converse reaction of Mn into Mn allows LDH250 to consume GSH and produce O, thereby avoiding the deactivation of ROS and cisplatin, as well as alleviating hypoxia. These characteristics of LDH250 boost the anti-tumor effect of cisplatin and can be enhanced by modulating the calcination temperature. Furthermore, the hydrogels can reduce the transportation distance of ROS in chemodynamic therapy (CDT) and regulate the release of cisplatin. Based on these tactics, the nanocomposite hydrogel platform exhibits effective antitumor efficacy and . This work provides a platform for enhancing the therapeutic efficiency of chemotherapy/CDT by simultaneously depleting GSH and alleviating hypoxia.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"59 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gulshan Verma, Anisha Gokarna, Hind Kadiri, Gilles Lerondel, Ankur Gupta
{"title":"Flexible ZnO nanowire platform by metal-seeded chemical bath deposition: Parametric analysis and predictive modeling","authors":"Gulshan Verma, Anisha Gokarna, Hind Kadiri, Gilles Lerondel, Ankur Gupta","doi":"10.1016/j.apmt.2024.102385","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102385","url":null,"abstract":"The growth of zinc oxide nanowires (ZnO NWs) on metal-seeded substrates is crucial for photonics, electronics, and sensing applications. Traditionally, NWs are grown using seed sintering on rigid substrates at high-temperature. However, the rise of flexible electronics, which use substrates unable to withstand high temperatures, has shifted focus to metal-assisted synthesis methods that do not require high-temperature sintering. This method has gained increasing attention due to its compatibility with flexible substrates. This article focuses on understanding the underlying growth mechanisms and achieving controlled growth of ZnO NWs on metal seeded flexible substrates. Furthermore, a parametric analysis is carried out to elucidate the correlation among different growth conditions in the chemical bath deposition (CBD) technique. Through a meticulously planned experimental design, the study investigates the influence of different growth conditions on synthesis outcomes. This leads to the formulation of predictive models using advanced machine learning (ML) methods particularly, artificial neural network (ANN). Following validation and training, the ANN model exhibits a remarkable ability to predict synthesis outcomes, yielding R values of 0.92 for diameter and 0.96 for length of NWs. Notably, the highest aspect ratio (AR) of ∼24 is attained following the growth conditions: 25 mM precursor concentration, 60 min growth time, and a growth temperature of 95 °C. Additionally, this method of growing ZnO NWs on a metal-seeded substrate offers an alternative approach for fabricating nanodevices for various emerging applications.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"14 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Programmable materials: Current trends, challenges, and perspectives","authors":"Giulia Scalet","doi":"10.1016/j.apmt.2024.102372","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102372","url":null,"abstract":"Research into programmable materials has attracted extraordinary interest since the nineties, when the term “programmable” was introduced for the first time. In its widest definition, the term is used to denote materials that are designed to be highly dynamic, either in shape and/or physical/functional properties, on-demand and in a precise, sequential predetermined way. Such unique feature allows them to adapt to various needs and offers new opportunities in several application fields, enabling them to overcome the limitations of traditional materials. The present paper aims to introduce readers to the world of programmable materials, enhance their interest, knowledge, and skills in the field, and provide useful insights and new ideas on how to approach their development and implementation. Accordingly, this paper offers an overview and discussion of current state-of-the-art and recent progress up to future perspectives. First, the historical evolution and definition of these materials as well as the types of programmable properties achievable are presented. Then, the different programming strategies that could be used to tune material properties are covered, with an emphasis on the constituent materials, applied stimuli, and geometrical arrangements. Finally, real-world applications, ongoing challenges, and future directions for this exciting class of materials are discussed.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"35 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador, André Balogh de Carvalho, Mirabel Cerqueira Rezende, Uttandaraman Sundararaj, Luiz Antonio Pessan
{"title":"Advanced ternary carbon-based hybrid nanocomposites for electromagnetic functional behavior in additive manufacturing","authors":"Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador, André Balogh de Carvalho, Mirabel Cerqueira Rezende, Uttandaraman Sundararaj, Luiz Antonio Pessan","doi":"10.1016/j.apmt.2024.102362","DOIUrl":"https://doi.org/10.1016/j.apmt.2024.102362","url":null,"abstract":"This study explores the processing and performance of acrylonitrile butadiene styrene (ABS)-based carbon ternary hybrid nanocomposites, incorporating carbon nanotubes (CNT), graphene nanoplatelets (GNP), and carbon black (CB), for applications in electromagnetic compatibility (EMC). The effect of nanocomposite processing on electromagnetic properties was evaluated by varying the mixing protocol, either through direct extrusion with simultaneous addition of all constituents or by preparing a master batch followed by dilution. The impact of nanofiller morphology and processing techniques on the behavior of nanocomposites was systematically investigated. Filaments of these nanocomposites were Additive Manufactured via Material Extrusion, and the resulting parts were evaluated for EMI shielding effectiveness (SE) in the X-band frequency range. The study reveals that the morphology, influenced by the processing strategy, significantly impacts the EMI SE properties of the printed samples. Particularly, ternary hybrids 3/3/3 wt% (CNT/GNP/CB) nanocomposites demonstrate promising electrical (0.003 S/cm), electromagnetic (29 dB of total attenuation), and mechanical performance (elastic modulus of 3080 MPa), with a clear advantage observed in those processed via direct extrusion. These nanocomposites were validated as feedstock filaments for 3D printing, and the printed sample exceeds the injection molded behavior for the composition 3/3/3 wt% (CNT/GNP/CB), achieving 40 dB of total attenuation at 11.8 GHz. The findings contribute valuable knowledge into tailoring nanocomposite formulations for additive manufacturing applications in EMI shielding, providing a nuanced understanding of the interplay between processing strategies, nanocomposite morphology, and resulting material properties.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"133 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}