Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador, André Balogh de Carvalho, Mirabel Cerqueira Rezende, Uttandaraman Sundararaj, Luiz Antonio Pessan
{"title":"Advanced ternary carbon-based hybrid nanocomposites for electromagnetic functional behavior in additive manufacturing","authors":"Erick Gabriel Ribeiro dos Anjos, Fabio Roberto Passador, André Balogh de Carvalho, Mirabel Cerqueira Rezende, Uttandaraman Sundararaj, Luiz Antonio Pessan","doi":"10.1016/j.apmt.2024.102362","DOIUrl":null,"url":null,"abstract":"This study explores the processing and performance of acrylonitrile butadiene styrene (ABS)-based carbon ternary hybrid nanocomposites, incorporating carbon nanotubes (CNT), graphene nanoplatelets (GNP), and carbon black (CB), for applications in electromagnetic compatibility (EMC). The effect of nanocomposite processing on electromagnetic properties was evaluated by varying the mixing protocol, either through direct extrusion with simultaneous addition of all constituents or by preparing a master batch followed by dilution. The impact of nanofiller morphology and processing techniques on the behavior of nanocomposites was systematically investigated. Filaments of these nanocomposites were Additive Manufactured via Material Extrusion, and the resulting parts were evaluated for EMI shielding effectiveness (SE) in the X-band frequency range. The study reveals that the morphology, influenced by the processing strategy, significantly impacts the EMI SE properties of the printed samples. Particularly, ternary hybrids 3/3/3 wt% (CNT/GNP/CB) nanocomposites demonstrate promising electrical (0.003 S/cm), electromagnetic (29 dB of total attenuation), and mechanical performance (elastic modulus of 3080 MPa), with a clear advantage observed in those processed via direct extrusion. These nanocomposites were validated as feedstock filaments for 3D printing, and the printed sample exceeds the injection molded behavior for the composition 3/3/3 wt% (CNT/GNP/CB), achieving 40 dB of total attenuation at 11.8 GHz. The findings contribute valuable knowledge into tailoring nanocomposite formulations for additive manufacturing applications in EMI shielding, providing a nuanced understanding of the interplay between processing strategies, nanocomposite morphology, and resulting material properties.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"133 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102362","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the processing and performance of acrylonitrile butadiene styrene (ABS)-based carbon ternary hybrid nanocomposites, incorporating carbon nanotubes (CNT), graphene nanoplatelets (GNP), and carbon black (CB), for applications in electromagnetic compatibility (EMC). The effect of nanocomposite processing on electromagnetic properties was evaluated by varying the mixing protocol, either through direct extrusion with simultaneous addition of all constituents or by preparing a master batch followed by dilution. The impact of nanofiller morphology and processing techniques on the behavior of nanocomposites was systematically investigated. Filaments of these nanocomposites were Additive Manufactured via Material Extrusion, and the resulting parts were evaluated for EMI shielding effectiveness (SE) in the X-band frequency range. The study reveals that the morphology, influenced by the processing strategy, significantly impacts the EMI SE properties of the printed samples. Particularly, ternary hybrids 3/3/3 wt% (CNT/GNP/CB) nanocomposites demonstrate promising electrical (0.003 S/cm), electromagnetic (29 dB of total attenuation), and mechanical performance (elastic modulus of 3080 MPa), with a clear advantage observed in those processed via direct extrusion. These nanocomposites were validated as feedstock filaments for 3D printing, and the printed sample exceeds the injection molded behavior for the composition 3/3/3 wt% (CNT/GNP/CB), achieving 40 dB of total attenuation at 11.8 GHz. The findings contribute valuable knowledge into tailoring nanocomposite formulations for additive manufacturing applications in EMI shielding, providing a nuanced understanding of the interplay between processing strategies, nanocomposite morphology, and resulting material properties.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.