{"title":"Cisplatin and ionic redox pairs co-delivery gelatin/hyaluronic acid hydrogels with amplified chemotherapy/chemodynamic tumor therapy","authors":"Shuhan Chen, Ru Xu, Panpan Huo, Junyu Liu, Dongdong Zhang, Jiajun Qiu, Xuanyong Liu","doi":"10.1016/j.apmt.2024.102388","DOIUrl":null,"url":null,"abstract":"The tumor therapeutic efficacy of cisplatin as a chemotherapy drug and nanomaterial as a chemodynamic inducer are inhibited by the high levels of glutathione (GSH) and hypoxia within the tumor microenvironment. Herein, an injectable nanocomposite hydrogel platform is designed via encapsulating calcined MgMnFe-layered double hydroxide (LDH250) nanosheets and cisplatin into gelatin/hyaluronic acid double-crosslinked hydrogel. As an inducer of Fenton/Fenton-like reactions, LDH250 nanosheets exhibit multiple redox cycling pairs (Mn/Mn/Mn, Fe/Fe) capable of generating abundant reactive oxygen species (ROS), which synergizes with cisplatin to kill tumor cells effectively. Apart from this, the converse reaction of Mn into Mn allows LDH250 to consume GSH and produce O, thereby avoiding the deactivation of ROS and cisplatin, as well as alleviating hypoxia. These characteristics of LDH250 boost the anti-tumor effect of cisplatin and can be enhanced by modulating the calcination temperature. Furthermore, the hydrogels can reduce the transportation distance of ROS in chemodynamic therapy (CDT) and regulate the release of cisplatin. Based on these tactics, the nanocomposite hydrogel platform exhibits effective antitumor efficacy and . This work provides a platform for enhancing the therapeutic efficiency of chemotherapy/CDT by simultaneously depleting GSH and alleviating hypoxia.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"59 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102388","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The tumor therapeutic efficacy of cisplatin as a chemotherapy drug and nanomaterial as a chemodynamic inducer are inhibited by the high levels of glutathione (GSH) and hypoxia within the tumor microenvironment. Herein, an injectable nanocomposite hydrogel platform is designed via encapsulating calcined MgMnFe-layered double hydroxide (LDH250) nanosheets and cisplatin into gelatin/hyaluronic acid double-crosslinked hydrogel. As an inducer of Fenton/Fenton-like reactions, LDH250 nanosheets exhibit multiple redox cycling pairs (Mn/Mn/Mn, Fe/Fe) capable of generating abundant reactive oxygen species (ROS), which synergizes with cisplatin to kill tumor cells effectively. Apart from this, the converse reaction of Mn into Mn allows LDH250 to consume GSH and produce O, thereby avoiding the deactivation of ROS and cisplatin, as well as alleviating hypoxia. These characteristics of LDH250 boost the anti-tumor effect of cisplatin and can be enhanced by modulating the calcination temperature. Furthermore, the hydrogels can reduce the transportation distance of ROS in chemodynamic therapy (CDT) and regulate the release of cisplatin. Based on these tactics, the nanocomposite hydrogel platform exhibits effective antitumor efficacy and . This work provides a platform for enhancing the therapeutic efficiency of chemotherapy/CDT by simultaneously depleting GSH and alleviating hypoxia.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.