Annual review of geneticsPub Date : 2023-11-27Epub Date: 2023-08-08DOI: 10.1146/annurev-genet-022123-040039
Yukiko M Yamashita
{"title":"Asymmetric Stem Cell Division and Germline Immortality.","authors":"Yukiko M Yamashita","doi":"10.1146/annurev-genet-022123-040039","DOIUrl":"10.1146/annurev-genet-022123-040039","url":null,"abstract":"<p><p>Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality-how germline cells reset the aging of cells-drawing a parallel between yeast and multicellular organisms.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"181-199"},"PeriodicalIF":11.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9959866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of geneticsPub Date : 2023-11-27Epub Date: 2023-10-03DOI: 10.1146/annurev-genet-061323-044915
Denise Zickler, Nancy Kleckner
{"title":"Meiosis: Dances Between Homologs.","authors":"Denise Zickler, Nancy Kleckner","doi":"10.1146/annurev-genet-061323-044915","DOIUrl":"10.1146/annurev-genet-061323-044915","url":null,"abstract":"<p><p>The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"1-63"},"PeriodicalIF":11.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41103352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of geneticsPub Date : 2023-11-27Epub Date: 2023-08-08DOI: 10.1146/annurev-genet-080320-031523
Liana Goehring, Tony T Huang, Duncan J Smith
{"title":"Transcription-Replication Conflicts as a Source of Genome Instability.","authors":"Liana Goehring, Tony T Huang, Duncan J Smith","doi":"10.1146/annurev-genet-080320-031523","DOIUrl":"10.1146/annurev-genet-080320-031523","url":null,"abstract":"<p><p>Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"157-179"},"PeriodicalIF":11.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10219280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of geneticsPub Date : 2023-11-27Epub Date: 2023-06-29DOI: 10.1146/annurev-genet-022123-102748
Malin L Pinsky, René D Clark, Jaelyn T Bos
{"title":"Coral Reef Population Genomics in an Age of Global Change.","authors":"Malin L Pinsky, René D Clark, Jaelyn T Bos","doi":"10.1146/annurev-genet-022123-102748","DOIUrl":"10.1146/annurev-genet-022123-102748","url":null,"abstract":"<p><p>Coral reefs are both exceptionally biodiverse and threatened by climate change and other human activities. Here, we review population genomic processes in coral reef taxa and their importance for understanding responses to global change. Many taxa on coral reefs are characterized by weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic environments, which together present a fascinating test of microevolutionary theory. Selection, gene flow, and hybridization have played and will continue to play an important role in the adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research remains exceptionally limited compared to the urgent needs. Critical areas for future investigation include understanding evolutionary potential and the mechanisms of local adaptation, developing historical baselines, and building greater research capacity in the countries where most reef diversity is concentrated.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"87-115"},"PeriodicalIF":11.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9696383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of geneticsPub Date : 2023-11-27Epub Date: 2023-08-10DOI: 10.1146/annurev-genet-030123-084224
Jiahui Zhang, Pui Y Lee, Ivona Aksentijevich, Qing Zhou
{"title":"How to Build a Fire: The Genetics of Autoinflammatory Diseases.","authors":"Jiahui Zhang, Pui Y Lee, Ivona Aksentijevich, Qing Zhou","doi":"10.1146/annurev-genet-030123-084224","DOIUrl":"10.1146/annurev-genet-030123-084224","url":null,"abstract":"<p><p>Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"245-274"},"PeriodicalIF":11.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9974613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of geneticsPub Date : 2023-11-27Epub Date: 2023-09-18DOI: 10.1146/annurev-genet-031623-105059
Robyn Raban, John M Marshall, Bruce A Hay, Omar S Akbari
{"title":"Manipulating the Destiny of Wild Populations Using CRISPR.","authors":"Robyn Raban, John M Marshall, Bruce A Hay, Omar S Akbari","doi":"10.1146/annurev-genet-031623-105059","DOIUrl":"10.1146/annurev-genet-031623-105059","url":null,"abstract":"<p><p>Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"361-390"},"PeriodicalIF":8.7,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064769/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of geneticsPub Date : 2023-11-27Epub Date: 2023-08-10DOI: 10.1146/annurev-genet-030723-120717
You Chen, Mauricio I Paramo, Yingying Zhang, Li Yao, Sagar R Shah, Yiyang Jin, Junke Zhang, Xiuqi Pan, Haiyuan Yu
{"title":"Finding Needles in the Haystack: Strategies for Uncovering Noncoding Regulatory Variants.","authors":"You Chen, Mauricio I Paramo, Yingying Zhang, Li Yao, Sagar R Shah, Yiyang Jin, Junke Zhang, Xiuqi Pan, Haiyuan Yu","doi":"10.1146/annurev-genet-030723-120717","DOIUrl":"10.1146/annurev-genet-030723-120717","url":null,"abstract":"<p><p>Despite accumulating evidence implicating noncoding variants in human diseases, unraveling their functionality remains a significant challenge. Systematic annotations of the regulatory landscape and the growth of sequence variant data sets have fueled the development of tools and methods to identify causal noncoding variants and evaluate their regulatory effects. Here, we review the latest advances in the field and discuss potential future research avenues to gain a more in-depth understanding of noncoding regulatory variants.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":" ","pages":"201-222"},"PeriodicalIF":11.1,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9976778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of geneticsPub Date : 2022-11-30Epub Date: 2022-09-02DOI: 10.1146/annurev-genet-072820-023642
David Exposito-Alonso, Beatriz Rico
{"title":"Mechanisms Underlying Circuit Dysfunction in Neurodevelopmental Disorders.","authors":"David Exposito-Alonso, Beatriz Rico","doi":"10.1146/annurev-genet-072820-023642","DOIUrl":"10.1146/annurev-genet-072820-023642","url":null,"abstract":"<p><p>Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"56 ","pages":"391-422"},"PeriodicalIF":11.1,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10749375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The 3D-Evo Space: Evolution of Gene Expression and Alternative Splicing Regulation.","authors":"Federica Mantica, Manuel Irimia","doi":"10.1146/annurev-genet-071719-020653","DOIUrl":"https://doi.org/10.1146/annurev-genet-071719-020653","url":null,"abstract":"<p><p>Animal species present relatively high levels of gene conservation, and yet they display a great variety of cell type and tissue phenotypes. These diverse phenotypes are mainly specified through differential gene usage, which relies on several mechanisms. Two of the most relevant mechanisms are regulated gene transcription, usually referred to as gene expression (rGE), and regulated alternative splicing (rAS). Several works have addressed how either rGE or rAS contributes to phenotypic diversity throughout evolution, but a back-to-back comparison between the two molecular mechanisms, specifically highlighting both their common regulatory principles and unique properties, is still missing. In this review, we propose an innovative framework for the unified comparison between rGE and rAS from different perspectives: the three-dimensional (3D)-evo space. We use the 3D-evo space to comprehensively (<i>a</i>) review the molecular basis of rGE and rAS (i.e., the molecular axis), (<i>b</i>) depict the tissue-specific phenotypes they contribute to (i.e., the tissue axis), and (<i>c</i>) describe the determinants that drive the evolution of rGE and rAS programs (i.e., the evolution axis). Finally, we unify the perspectives emerging from the three axes by discussing general trends and specific examples of rGE and rAS tissue program evolution.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"56 ","pages":"315-337"},"PeriodicalIF":11.1,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10381890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Half Century Defining the Logic of Cellular Life.","authors":"Lucy Shapiro","doi":"10.1146/annurev-genet-071719-021436","DOIUrl":"https://doi.org/10.1146/annurev-genet-071719-021436","url":null,"abstract":"<p><p>Over more than fifty years, I have studied how the logic that controls and integrates cell function is built into the dynamic architecture of living cells. I worked with a succession of exceptionally talented students and postdocs, and we discovered that the bacterial cell is controlled by an integrated genetic circuit in which transcriptional and translational controls are interwoven with the three-dimensional deployment of key regulatory and morphological proteins. <i>Caulobacter</i>'s interconnected genetic regulatory network includes logic that regulates sets of genes expressed at specific times in the cell cycle and mechanisms that synchronize the advancement of the core cyclical circuit with chromosome replication and cytokinesis. Here, I have traced my journey from New York City art student to Stanford developmental biologist.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"56 ","pages":"1-15"},"PeriodicalIF":11.1,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10385649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}