Antioxidants & redox signaling最新文献

筛选
英文 中文
HIF-1α/BNIP3-Mediated Endoplasmic Reticulum Degradation via Autophagy Protects Against Ischemia Reperfusion-Induced Acute Kidney Injury. HIF-1α/BNIP3通过自噬介导的内质网降解可防止缺血再灌注引起的急性肾损伤。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-28 DOI: 10.1089/ars.2023.0467
Hao Zhao, Ming Yang, Yachun Han, Na Jiang, Yan Liu, Chenrui Li, Jinfei Yang, Shilu Luo, Chongbin Liu, Lin Sun, Fuyou Liu, Yu Liu
{"title":"HIF-1α/BNIP3-Mediated Endoplasmic Reticulum Degradation via Autophagy Protects Against Ischemia Reperfusion-Induced Acute Kidney Injury.","authors":"Hao Zhao, Ming Yang, Yachun Han, Na Jiang, Yan Liu, Chenrui Li, Jinfei Yang, Shilu Luo, Chongbin Liu, Lin Sun, Fuyou Liu, Yu Liu","doi":"10.1089/ars.2023.0467","DOIUrl":"10.1089/ars.2023.0467","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Emerging Role of Herbal Medicines in Cancer by Interfering with Posttranslational Modifications. 中草药通过干扰翻译后修饰对癌症的新作用。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-07 DOI: 10.1089/ars.2023.0418
Rui Wang, Yu Li, Jiahui Ji, Lingwei Kong, Yukai Huang, Zhongqiu Liu, Linlin Lu
{"title":"The Emerging Role of Herbal Medicines in Cancer by Interfering with Posttranslational Modifications.","authors":"Rui Wang, Yu Li, Jiahui Ji, Lingwei Kong, Yukai Huang, Zhongqiu Liu, Linlin Lu","doi":"10.1089/ars.2023.0418","DOIUrl":"10.1089/ars.2023.0418","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Herbal medicines have a long history of comprehensive cancer treatment through various posttranslational modifications (PTMs). Recently, emerging evidence revealed that dysregulation of reactive oxygen species (ROS) and ROS-regulated signaling pathways influence cancer initiation, growth, and progression in a paradoxical role with either low levels or increasing levels of basal ROS. However, ROS-triggered modifications of target proteins in the face of ROS-mediated signal transduction are not fully understood in the anticancer therapies of herbal medicines. In this review, we briefly introduce the PTM-dependent regulations of herbal medicines, and then focus on the current ideals that targeting ROS-dependent PTMs <i>via</i> antioxidant and redox signaling pathways can provide a promising strategy in herbal-based anticancer effects. <b><i>Recent Advances:</i></b> Advanced development in highly sensitive mass spectrometry-based techniques has helped utilize ROS-triggered protein modifications in numerous cancers. Accumulating evidence has been achieved in laboratory to extensively ascertain the biological mechanism of herbal medicines targeting ROS in cancer therapy. Two general mechanisms underlining ROS-induced cell signaling include redox state and oxidative modification of target protein, indicating a new perspective to comprehend the intricate dialogues between herbal medicines and cancer cellular contexts. <b><i>Critical Issues:</i></b> Complex components of herbal medicines limit the benefits of herbal-based cancer therapies. In this review, we address that ROS-dependent PTMs add a layer of proteomic complexity to the cancer through altering the protein structure, expression, function, and localization. Elaborating ROS-triggered PTMs implicated in cell signaling, apoptosis, and transcriptional regulation function, and the possible cellular signaling, has provided important information about the contribution of many ROS targeting herbal therapies in anticancer effects. Continued optimization of proteomic strategies for PTM analysis in herbal medicines is also briefly discussed. <b><i>Future Directions:</i></b> Rigorous evaluations of herbal medicines and proteomic strategies are necessary to explore the aberrant regulation of ROS-triggered antioxidant and redox signaling contributing to the novel protein targets and herbal-associated pharmacological issues. These efforts will eventually help develop more herbal drugs as modern therapeutic agents.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141544476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Baicalin Attenuates Diabetic Cardiomyopathy In Vivo and In Vitro by Inhibiting Autophagy and Cell Death Through SENP1/SIRT3 Signaling Pathway Activation. 通过激活 SENP1/SIRT3 信号通路抑制自噬和细胞死亡,黄芩苷可减轻体内和体外糖尿病心肌病。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-07 DOI: 10.1089/ars.2023.0457
Peipei Zhang, Haowei Wu, Haifei Lou, Jiedong Zhou, Jinjin Hao, Hui Lin, Songqing Hu, Zuoquan Zhong, Juntao Yang, Hangyuan Guo, Jufang Chi
{"title":"Baicalin Attenuates Diabetic Cardiomyopathy <i>In Vivo</i> and <i>In Vitro</i> by Inhibiting Autophagy and Cell Death Through SENP1/SIRT3 Signaling Pathway Activation.","authors":"Peipei Zhang, Haowei Wu, Haifei Lou, Jiedong Zhou, Jinjin Hao, Hui Lin, Songqing Hu, Zuoquan Zhong, Juntao Yang, Hangyuan Guo, Jufang Chi","doi":"10.1089/ars.2023.0457","DOIUrl":"10.1089/ars.2023.0457","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Diabetic heart damage can lead to cardiomyocyte death, which endangers human health. Baicalin (BAI) is a bioactive compound that plays an important role in cardiovascular diseases. Sentrin/SUMO-specific protease 1 (<i>SENP1</i>) regulates the de-small ubiquitin-like modifier (deSUMOylation) process of Sirtuin 3 (<i>SIRT3</i>) and plays a crucial role in regulating mitochondrial mass and preventing cell injury. Our hypothesis is that BAI regulates the deSUMOylation level of <i>SIRT3</i> through <i>SENP1</i> to enhance mitochondrial quality control and prevent cell death, ultimately improving diabetic cardiomyopathy (DCM). <b><i>Results:</i></b> The protein expression of <i>SENP1</i> decreased in cardiomyocytes induced by high glucose and in db/db mice. The cardioprotective effects of BAI were eliminated by silencing endogenous <i>SENP1</i>, whereas overexpression of <i>SENP1</i> showed similar cardioprotective effects to those of BAI. Furthermore, co-immunoprecipitation experiments showed that BAI's cardioprotective effect was due to the inhibition of the SUMOylation modification level of <i>SIRT3</i> by <i>SENP1</i>. Inhibition of <i>SENP1</i> expression resulted in an increase in SUMOylation of <i>SIRT3</i>. This led to increased acetylation of mitochondrial protein, accumulation of reactive oxygen species, impaired autophagy, impaired mitochondrial oxidative phosphorylation, and increased cell death. None of these changes could be reversed by BAI. <b><i>Conclusion:</i></b> BAI improves DCM by promoting <i>SIRT3</i> deSUMOylation through <i>SENP1</i>, restoring mitochondrial stability, and preventing the cell death of cardiomyocytes. <b><i>Innovation:</i></b> This study proposes for the first time that <i>SIRT3</i> SUMOylation modification is involved in the development of DCM and provides <i>in vivo</i> and <i>in vitro</i> data support that BAI inhibits cardiomyocyte ferroptosis and apoptosis in DCM through <i>SENP1</i>. [Figure: see text].</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Network of Extracellular Traps in the Pathogenesis of Sterile Chronic Inflammatory Diseases: Role of Oxidative Stress and Potential Clinical Applications. 细胞外陷阱网络在无菌性慢性炎症性疾病发病机制中的作用:氧化应激的作用和潜在的临床应用。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2023-11-07 DOI: 10.1089/ars.2023.0329
Mangala Hegde, Sosmitha Girisa, Thulasidharan Nair Devanarayanan, Mohammed S Alqahtani, Mohamed Abbas, Gautam Sethi, Ajaikumar B Kunnumakkara
{"title":"Network of Extracellular Traps in the Pathogenesis of Sterile Chronic Inflammatory Diseases: Role of Oxidative Stress and Potential Clinical Applications.","authors":"Mangala Hegde, Sosmitha Girisa, Thulasidharan Nair Devanarayanan, Mohammed S Alqahtani, Mohamed Abbas, Gautam Sethi, Ajaikumar B Kunnumakkara","doi":"10.1089/ars.2023.0329","DOIUrl":"10.1089/ars.2023.0329","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"396-427"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41103256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting Peroxisome Proliferator-Activated Receptor-β/δ, Reactive Oxygen Species and Redox Signaling with Phytocompounds for Cancer Therapy. 利用植物化合物靶向过氧化物酶体增殖激活受体-β/δ、活性氧和氧化还原信号来治疗癌症
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-03-25 DOI: 10.1089/ars.2023.0442
Charanjit Kaur, Sanjeev Kumar Sahu, Keshav Bansal, Lindsay K DeLiberto, Jie Zhang, Devesh Tewari, Anupam Bishayee
{"title":"Targeting Peroxisome Proliferator-Activated Receptor-β/δ, Reactive Oxygen Species and Redox Signaling with Phytocompounds for Cancer Therapy.","authors":"Charanjit Kaur, Sanjeev Kumar Sahu, Keshav Bansal, Lindsay K DeLiberto, Jie Zhang, Devesh Tewari, Anupam Bishayee","doi":"10.1089/ars.2023.0442","DOIUrl":"10.1089/ars.2023.0442","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Peroxisome proliferator-activated receptors (PPARs) have a moderately preserved amino-terminal domain, an extremely preserved DNA-binding domain, an integral hinge region, and a distinct ligand-binding domain that are frequently encountered with the other nuclear receptors. PPAR-β/δ is among the three nuclear receptor superfamily members in the PPAR group. <b><i>Recent Advances:</i></b> Emerging studies provide an insight on natural compounds that have gained increasing attention as potential anticancer agents due to their ability to target multiple pathways involved in cancer development and progression. <b><i>Critical Issues:</i></b> Modulation of PPAR-β/δ activity has been suggested as a potential therapeutic strategy for cancer management. This review focuses on the ability of bioactive phytocompounds to impact reactive oxygen species (ROS) and redox signaling by targeting PPAR-β/δ for cancer therapy. The rise of ROS in cancer cells may play an important part in the initiation and progression of cancer. However, excessive levels of ROS stress can also be toxic to the cells and cancer cells with increased oxidative stress are likely to be more vulnerable to damage by further ROS insults induced by exogenous agents, such as phytocompounds and therapeutic agents. Therefore, redox modulation is a way to selectively kill cancer cells without causing significant toxicity to normal cells. However, use of antioxidants together with cancer drugs may risk the effect of treatment as both act through opposite mechanisms. <b><i>Future Directions:</i></b> It is advisable to employ more thorough and detailed methodologies to undertake mechanistic explorations of numerous phytocompounds. Moreover, conducting additional clinical studies is recommended to establish optimal dosages, efficacy, and the impact of different phytochemicals on PPAR-β/δ.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"342-395"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipotoxicity Induces Cardiomyocyte Ferroptosis via Activating the STING Pathway. 脂肪毒性通过激活 STING 通路诱导心肌细胞铁变态反应
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 DOI: 10.1089/ars.2023.0510
Qian Chen, Yina Wang, Jiafu Wang, Xiaolan Ouyang, Junlin Zhong, Yao Huang, Zhuoshan Huang, Benrong Zheng, Long Peng, Xixiang Tang, Suhua Li
{"title":"Lipotoxicity Induces Cardiomyocyte Ferroptosis via Activating the STING Pathway.","authors":"Qian Chen, Yina Wang, Jiafu Wang, Xiaolan Ouyang, Junlin Zhong, Yao Huang, Zhuoshan Huang, Benrong Zheng, Long Peng, Xixiang Tang, Suhua Li","doi":"10.1089/ars.2023.0510","DOIUrl":"10.1089/ars.2023.0510","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141603118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased Neuronal Nitric Oxide Synthase in Alzheimer's Disease Mediates Spontaneous Calcium Signaling and Divergent Glutamatergic Calcium Responses. 阿尔茨海默病中神经元一氧化氮合酶的增加介导了自发钙信号和谷氨酸能钙反应的分化。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-03-20 DOI: 10.1089/ars.2023.0395
Rachelle Balez, Claire H Stevens, Kerstin Lenk, Simon Maksour, Kuldip Sidhu, Greg Sutherland, Lezanne Ooi
{"title":"Increased Neuronal Nitric Oxide Synthase in Alzheimer's Disease Mediates Spontaneous Calcium Signaling and Divergent Glutamatergic Calcium Responses.","authors":"Rachelle Balez, Claire H Stevens, Kerstin Lenk, Simon Maksour, Kuldip Sidhu, Greg Sutherland, Lezanne Ooi","doi":"10.1089/ars.2023.0395","DOIUrl":"10.1089/ars.2023.0395","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"255-277"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139650181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glutamine Mitigates Oxidative Stress-Induced Matrix Degradation, Ferroptosis, and Pyroptosis in Nucleus Pulposus Cells via Deubiquitinating and Stabilizing Nrf2. 谷氨酰胺通过去泛素化和稳定Nrf2减轻氧化应激诱导的髓核细胞基质降解、铁沉着和热沉着。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-04-24 DOI: 10.1089/ars.2023.0384
Jiajun Wu, Weitao Han, Yangyang Zhang, Shuangxing Li, Tianyu Qin, Zhengqi Huang, Chao Zhang, Ming Shi, Yuliang Wu, Wanli Zheng, Bo Gao, Kang Xu, Wei Ye
{"title":"Glutamine Mitigates Oxidative Stress-Induced Matrix Degradation, Ferroptosis, and Pyroptosis in Nucleus Pulposus Cells via Deubiquitinating and Stabilizing Nrf2.","authors":"Jiajun Wu, Weitao Han, Yangyang Zhang, Shuangxing Li, Tianyu Qin, Zhengqi Huang, Chao Zhang, Ming Shi, Yuliang Wu, Wanli Zheng, Bo Gao, Kang Xu, Wei Ye","doi":"10.1089/ars.2023.0384","DOIUrl":"10.1089/ars.2023.0384","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Intervertebral disc degeneration (IDD) is closely related to low back pain, which is a prevalent age-related problem worldwide; however, the mechanism underlying IDD is unknown. Glutamine, a free amino acid prevalent in plasma, is recognized for its anti-inflammatory and antioxidant properties in various diseases, and the current study aims to clarify the effect and mechanism of glutamine in IDD. <b><i>Results:</i></b> A synergistic interplay was observed between pyroptosis and ferroptosis within degenerated human disc specimens. Glutamine significantly mitigated IDD in both <i>ex vivo</i> and <i>in vivo</i> experimental models. Moreover, glutamine protected nucleus pulposus (NP) cells after tert-butyl hydroperoxide (TBHP)-induced pyroptosis, ferroptosis, and extracellular matrix (ECM) degradation <i>in vitro</i>. Glutamine protected NP cells from TBHP-induced ferroptosis by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) accumulation by inhibiting its ubiquitin-proteasome degradation and inhibiting lipid oxidation. <b><i>Innovation and Conclusions:</i></b> A direct correlation is evident in the progression of IDD between the processes of pyroptosis and ferroptosis. Glutamine suppressed oxidative stress-induced cellular processes, including pyroptosis, ferroptosis, and ECM degradation through deubiquitinating Nrf2 and inhibiting lipid oxidation in NP cells. Glutamine is a promising novel therapeutic target for the management of IDD.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"278-295"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building an Understanding of Proteostasis in Reproductive Cells: The Impact of Reactive Carbonyl Species on Protein Fate. 了解生殖细胞中的蛋白稳态:活性羰基物种对蛋白质命运的影响
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-03-25 DOI: 10.1089/ars.2023.0314
Shannon P Smyth, Brett Nixon, David A Skerrett-Byrne, Nathan D Burke, Elizabeth G Bromfield
{"title":"Building an Understanding of Proteostasis in Reproductive Cells: The Impact of Reactive Carbonyl Species on Protein Fate.","authors":"Shannon P Smyth, Brett Nixon, David A Skerrett-Byrne, Nathan D Burke, Elizabeth G Bromfield","doi":"10.1089/ars.2023.0314","DOIUrl":"10.1089/ars.2023.0314","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. <b><i>Recent Advances:</i></b> Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects <i>via</i> the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. <b><i>Critical Issues:</i></b> Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. <b><i>Future Directions:</i></b> An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"296-321"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombosis and Aging: Fibrin Clot Properties and Oxidative Stress. 血栓与衰老:纤维蛋白凝块特性与氧化应激。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-02-12 DOI: 10.1089/ars.2023.0365
Małgorzata Konieczyńska, Joanna Natorska, Anetta Undas
{"title":"Thrombosis and Aging: Fibrin Clot Properties and Oxidative Stress.","authors":"Małgorzata Konieczyńska, Joanna Natorska, Anetta Undas","doi":"10.1089/ars.2023.0365","DOIUrl":"10.1089/ars.2023.0365","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. <b><i>Recent Advances:</i></b> Aging affects blood coagulation and fibrinolysis <i>via</i> multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. <b><i>Critical Issues:</i></b> Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. <b><i>Future Directions:</i></b> Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"233-254"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信