{"title":"Viral Infections and the Glutathione Peroxidase Family: Mechanisms of Disease Development.","authors":"Qingqing Lu, Yuan Ding, Wen Liu, Shuzhen Liu","doi":"10.1089/ars.2024.0645","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Significance:</i></b> The glutathione peroxidase (GPx) family is recognized for its essential function in maintaining cellular redox balance and countering the overproduction of reactive oxygen species (ROS), a process intricately linked to the progression of various diseases including those spurred by viral infections. The modulation of GPx activity by viruses presents a critical juncture in disease pathogenesis, influencing cellular responses and the trajectory of infection-induced diseases. <b><i>Recent Advances:</i></b> Cutting-edge research has unveiled the GPx family's dynamic role in modulating viral pathogenesis. Notably, GPX4's pivotal function in regulating ferroptosis presents a novel avenue for the antiviral therapy. The discovery that selenium, an essential micronutrient for GPx activity, possesses antiviral properties has propelled us toward rethinking traditional treatment modalities. <b><i>Critical Issues:</i></b> Deciphering the intricate relationship between viral infections and GPx family members is paramount. Viral invasion can precipitate significant alterations in GPx function, influencing disease outcomes. The multifaceted nature of GPx activity during viral infections suggests that a deeper understanding of these interactions could yield novel insights into disease mechanisms, diagnostics, prognostics, and even chemotherapeutic resistance. <b><i>Future Directions:</i></b> This review aims to synthesize current knowledge on the impact of viral infections on GPx activity and expression and identify key advances. By elucidating the mechanisms through which GPx family members intersect with viral pathogenesis, we propose to uncover innovative therapeutic strategies that leverage the antioxidant properties of GPx to combat viral infections. The exploration of GPx as a therapeutic target and biomarker holds promise for the development of next-generation antiviral therapies. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0645","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: The glutathione peroxidase (GPx) family is recognized for its essential function in maintaining cellular redox balance and countering the overproduction of reactive oxygen species (ROS), a process intricately linked to the progression of various diseases including those spurred by viral infections. The modulation of GPx activity by viruses presents a critical juncture in disease pathogenesis, influencing cellular responses and the trajectory of infection-induced diseases. Recent Advances: Cutting-edge research has unveiled the GPx family's dynamic role in modulating viral pathogenesis. Notably, GPX4's pivotal function in regulating ferroptosis presents a novel avenue for the antiviral therapy. The discovery that selenium, an essential micronutrient for GPx activity, possesses antiviral properties has propelled us toward rethinking traditional treatment modalities. Critical Issues: Deciphering the intricate relationship between viral infections and GPx family members is paramount. Viral invasion can precipitate significant alterations in GPx function, influencing disease outcomes. The multifaceted nature of GPx activity during viral infections suggests that a deeper understanding of these interactions could yield novel insights into disease mechanisms, diagnostics, prognostics, and even chemotherapeutic resistance. Future Directions: This review aims to synthesize current knowledge on the impact of viral infections on GPx activity and expression and identify key advances. By elucidating the mechanisms through which GPx family members intersect with viral pathogenesis, we propose to uncover innovative therapeutic strategies that leverage the antioxidant properties of GPx to combat viral infections. The exploration of GPx as a therapeutic target and biomarker holds promise for the development of next-generation antiviral therapies. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology