Antioxidants & redox signaling最新文献

筛选
英文 中文
Building an Understanding of Proteostasis in Reproductive Cells: The Impact of Reactive Carbonyl Species on Protein Fate. 了解生殖细胞中的蛋白稳态:活性羰基物种对蛋白质命运的影响
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-03-25 DOI: 10.1089/ars.2023.0314
Shannon P Smyth, Brett Nixon, David A Skerrett-Byrne, Nathan D Burke, Elizabeth G Bromfield
{"title":"Building an Understanding of Proteostasis in Reproductive Cells: The Impact of Reactive Carbonyl Species on Protein Fate.","authors":"Shannon P Smyth, Brett Nixon, David A Skerrett-Byrne, Nathan D Burke, Elizabeth G Bromfield","doi":"10.1089/ars.2023.0314","DOIUrl":"10.1089/ars.2023.0314","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. <b><i>Recent Advances:</i></b> Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects <i>via</i> the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. <b><i>Critical Issues:</i></b> Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. <b><i>Future Directions:</i></b> An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"296-321"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombosis and Aging: Fibrin Clot Properties and Oxidative Stress. 血栓与衰老:纤维蛋白凝块特性与氧化应激。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-02-12 DOI: 10.1089/ars.2023.0365
Małgorzata Konieczyńska, Joanna Natorska, Anetta Undas
{"title":"Thrombosis and Aging: Fibrin Clot Properties and Oxidative Stress.","authors":"Małgorzata Konieczyńska, Joanna Natorska, Anetta Undas","doi":"10.1089/ars.2023.0365","DOIUrl":"10.1089/ars.2023.0365","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. <b><i>Recent Advances:</i></b> Aging affects blood coagulation and fibrinolysis <i>via</i> multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. <b><i>Critical Issues:</i></b> Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. <b><i>Future Directions:</i></b> Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"233-254"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Cell-Derived Cholesterol Crystals Promote Endothelial Inflammation in Early Atherogenesis. 内皮细胞衍生的胆固醇结晶会促进动脉粥样硬化早期的内皮炎症。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-04-10 DOI: 10.1089/ars.2023.0498
Xia Wang, Wenxia Fu, Guo Zhou, Huanhuan Huo, Xin Shi, Hao Wang, Yinghua Wang, Xiying Huang, Linghong Shen, Long Li, Ben He
{"title":"Endothelial Cell-Derived Cholesterol Crystals Promote Endothelial Inflammation in Early Atherogenesis.","authors":"Xia Wang, Wenxia Fu, Guo Zhou, Huanhuan Huo, Xin Shi, Hao Wang, Yinghua Wang, Xiying Huang, Linghong Shen, Long Li, Ben He","doi":"10.1089/ars.2023.0498","DOIUrl":"10.1089/ars.2023.0498","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"201-215"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low Expression of Lipoic Acid Synthase Aggravates Silica-Induced Pulmonary Fibrosis by Inhibiting the Differentiation of Tregs in Mice. 硫辛酸合成酶的低表达会抑制小鼠Tregs的分化,从而加重二氧化硅诱导的肺纤维化。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-02-12 DOI: 10.1089/ars.2023.0387
Sensen Yan, Yingzheng Zhao, Jingyi Yan, Yabo Guan, Mengdi Lyu, Guangcui Xu, Xuesi Yang, Yichun Bai, Sanqiao Yao
{"title":"Low Expression of Lipoic Acid Synthase Aggravates Silica-Induced Pulmonary Fibrosis by Inhibiting the Differentiation of Tregs in Mice.","authors":"Sensen Yan, Yingzheng Zhao, Jingyi Yan, Yabo Guan, Mengdi Lyu, Guangcui Xu, Xuesi Yang, Yichun Bai, Sanqiao Yao","doi":"10.1089/ars.2023.0387","DOIUrl":"10.1089/ars.2023.0387","url":null,"abstract":"<p><p><b><i>Aims:</i></b> In addition to reducing the respiratory function, crystalline silica (SiO<sub>2</sub>) disturbs the immune response by affecting immune cells during the progression of silicosis. Regulatory T cell (Treg) differentiation may play a key role in the abnormal polarization of T helper cell (Th)1 and Th2 cells in the development of silicosis-induced fibrosis. Alpha-lipoic acid (ALA) has immunomodulatory effects by promoting Tregs differentiation. Thus, ALA may have a therapeutic potential for treating autoimmune disorders in patients with silicosis. However, little is known regarding whether ALA regulates the immune system during silicosis development. <b><i>Results:</i></b> We found that the expression levels of collagen increased, and the antioxidant capacity was lower in the <i>Lias<sup>-/-</sup></i>+SiO<sub>2</sub> group than in the <i>Lias</i><sup>+<i>/+</i></sup>+SiO<sub>2</sub> group. The proportion of Tregs decreased in the peripheral blood and spleen tissue in mice exposed to SiO<sub>2</sub>. The proportion of Tregs in the <i>Lias<sup>-/-</sup></i>+SiO<sub>2</sub> group was significantly lower than that in the <i>Lias<sup>+/+</sup></i>+SiO<sub>2</sub> group. Supplementary exogenous ALA attenuates the accumulation of inflammatory cells and extracellular matrix in lung tissues. ALA promotes the immunological balance between Th17 and Treg responses during the development of silicosis-induced fibrosis. <b><i>Innovation and Conclusion:</i></b> Our findings confirmed that low expression of lipoic acid synthase aggravates SiO<sub>2</sub>-induced silicosis, and that supplementary exogenous ALA has therapeutic potential by improving Tregs in silicosis fibrosis.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"216-232"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity. 蛋白二硫异构酶活性的核心是构象依赖性域间氧化还原中继。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-04-15 DOI: 10.1089/ars.2023.0288
Eduardo P Melo, Soukaina El-Guendouz, Cátia Correia, Fernando Teodoro, Carlos Lopes, Paulo J Martel
{"title":"A Conformational-Dependent Interdomain Redox Relay at the Core of Protein Disulfide Isomerase Activity.","authors":"Eduardo P Melo, Soukaina El-Guendouz, Cátia Correia, Fernando Teodoro, Carlos Lopes, Paulo J Martel","doi":"10.1089/ars.2023.0288","DOIUrl":"10.1089/ars.2023.0288","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Protein disulfide isomerases (PDIs) are a family of chaperones resident in the endoplasmic reticulum (ER). In addition to holdase function, some members catalyze disulfide bond formation and isomerization, a crucial step for native folding and prevention of aggregation of misfolded proteins. PDIs are characterized by an arrangement of thioredoxin-like domains, with the canonical protein disulfide isomerase A1 (PDIA1) organized as four thioredoxin-like domains forming a horseshoe with two active sites, <i>a</i> and <i>a</i>', at the extremities. We aimed to clarify important aspects underlying the catalytic cycle of PDIA1 in the context of the full pathways of oxidative protein folding operating in the ER. <b><i>Results:</i></b> Using two fluorescent redox sensors, redox green fluorescent protein 2 (roGFP2) and HyPer (circularly permutated yellow fluorescent protein containing the regulatory domain of the H<sub>2</sub>O<sub>2</sub>-sensing protein OxyR), either unfolded or native, as client substrates, we identified the N-terminal <i>a</i> active site of PDIA1 as the main oxidant of thiols. From there, electrons can flow to the C-terminal <i>a</i>' active site, with the redox-dependent conformational flexibility of PDIA1 allowing the formation of an interdomain disulfide bond. The <i>a</i>' active site then acts as a crossing point to redirect electrons to ER downstream oxidases or back to client proteins to reduce scrambled disulfide bonds. <b><i>Innovation and Conclusions:</i></b> The two active sites of PDIA1 work cooperatively as an interdomain redox relay mechanism that explains PDIA1 oxidative activity to form native disulfides and PDIA1 reductase activity to resolve scrambled disulfides. This mechanism suggests a new rationale for shutting down oxidative protein folding under ER redox imbalance. Whether it applies to physiological substrates in cells remains to be shown.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"181-200"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140142676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies. 当前抗癌疗法中的 ROS 调节。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-08-01 Epub Date: 2024-04-01 DOI: 10.1089/ars.2023.0445
Jiaqi Li, Justin Yi Shen Lim, Jie Qing Eu, Andrew Kieran Ming Hui Chan, Boon Cher Goh, Lingzhi Wang, Andrea Li-Ann Wong
{"title":"Reactive Oxygen Species Modulation in the Current Landscape of Anticancer Therapies.","authors":"Jiaqi Li, Justin Yi Shen Lim, Jie Qing Eu, Andrew Kieran Ming Hui Chan, Boon Cher Goh, Lingzhi Wang, Andrea Li-Ann Wong","doi":"10.1089/ars.2023.0445","DOIUrl":"10.1089/ars.2023.0445","url":null,"abstract":"<p><p><b><i>Significance:</i></b> Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism, and are tightly controlled through homeostatic mechanisms to maintain intracellular redox, regulating growth and proliferation in healthy cells. However, ROS production is perturbed in cancers where abnormal accumulation of ROS leads to oxidative stress and genomic instability, triggering oncogenic signaling pathways on one hand, while increasing oxidative damage and triggering ROS-dependent death signaling on the other. <b><i>Recent Advances:</i></b> Our review illuminates how critical interactions between ROS and oncogenic signaling, the tumor microenvironment, and DNA damage response (DDR) pathways have led to interest in ROS modulation as a means of enhancing existing anticancer strategies and developing new therapeutic opportunities. <b><i>Critical Issues:</i></b> ROS equilibrium exists <i>via</i> a delicate balance of pro-oxidant and antioxidant species within cells. \"Antioxidant\" approaches have been explored mainly in the form of chemoprevention, but there is insufficient evidence to advocate its routine application. More progress has been made <i>via</i> the \"pro-oxidant\" approach of targeting cancer vulnerabilities and inducing oxidative stress. Various therapeutic modalities have employed this approach, including direct ROS-inducing agents, chemotherapy, targeted therapies, DDR therapies, radiotherapy, and immunotherapy. Finally, emerging delivery systems such as \"nanosensitizers\" as radiotherapy enhancers are currently in development. <b><i>Future Directions:</i></b> While approaches designed to induce ROS have shown considerable promise in selectively targeting cancer cells and dealing with resistance to conventional therapies, most are still in early phases of development and challenges remain. Further research should endeavor to refine treatment strategies, optimize drug combinations, and identify predictive biomarkers of ROS-based cancer therapies.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"322-341"},"PeriodicalIF":5.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. 颗粒物和交通噪声诱发心血管损伤与经典风险因素高血压之间的病理机制协同作用。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-07-11 DOI: 10.1089/ars.2024.0659
Marin Kuntic, Omar Hahad, Sadeer Al-Kindi, Matthias Oelze, Jos Lelieveld, Andreas Daiber, Thomas Münzel
{"title":"Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension.","authors":"Marin Kuntic, Omar Hahad, Sadeer Al-Kindi, Matthias Oelze, Jos Lelieveld, Andreas Daiber, Thomas Münzel","doi":"10.1089/ars.2024.0659","DOIUrl":"10.1089/ars.2024.0659","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141316602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scavenger Receptor Class B Type I Deficiency Induces Iron Overload and Ferroptosis in Renal Tubular Epithelial Cells via Hypoxia-Inducible Factor-1α/Transferrin Receptor 1 Signaling Pathway. SRBI 缺乏可通过 HIF-1α/TFR1 信号通路诱导肾小管上皮细胞铁超载和铁变态反应。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-07-01 Epub Date: 2024-01-18 DOI: 10.1089/ars.2023.0380
LiJiao Yang, Qing Liu, QianYu Lu, Jing-Jie Xiao, An-Yao Fu, Shan Wang, LiHua Ni, Jun-Wei Hu, Hong Yu, XiaoYan Wu, Bai-Fang Zhang
{"title":"Scavenger Receptor Class B Type I Deficiency Induces Iron Overload and Ferroptosis in Renal Tubular Epithelial Cells <i>via</i> Hypoxia-Inducible Factor-1α/Transferrin Receptor 1 Signaling Pathway.","authors":"LiJiao Yang, Qing Liu, QianYu Lu, Jing-Jie Xiao, An-Yao Fu, Shan Wang, LiHua Ni, Jun-Wei Hu, Hong Yu, XiaoYan Wu, Bai-Fang Zhang","doi":"10.1089/ars.2023.0380","DOIUrl":"10.1089/ars.2023.0380","url":null,"abstract":"<p><p><b><i>Aims:</i></b> Scavenger receptor class B type I (SRBI) promotes cell cholesterol efflux and the clearance of plasma cholesterol. Thus, <i>SRBI</i> deficiency causes abnormal cholesterol metabolism and hyperlipidemia. Studies have suggested that ferroptosis is involved in lipotoxicity; however, whether <i>SRBI</i> deficiency could induce ferroptosis remains to be investigated. <b><i>Results:</i></b> We knocked down or knocked out SRBI in renal HK-2 cells and C57BL/6 mice to determine the expression levels of ferroptosis-related regulators. Our results demonstrated that <i>SRBI</i> deficiency upregulates transferrin receptor 1 (TFR1) expression and downregulates ferroportin expression, which induces iron overload and subsequent ferroptosis in renal tubular epithelial cells. TFR1 is known to be regulated by hypoxia-inducible factor-1α (HIF-1α). Next, we investigated whether <i>SRBI</i> deletion affected HIF-1α. SRBI deletion upregulated the mRNA and protein expression of HIF-1α, and promoted its translocation to the nucleus. To determine whether HIF-1α plays a key role in <i>SRBI</i>-deficiency-induced ferroptosis, we used HIF-1α inhibitor and siHIF-1α in HK-2 cells, and found that downregulation of HIF-1α prevented SRBI-silencing-induced TFR1 upregulation and iron overload, and eventually reduced ferroptosis. The underlying mechanism of HIF-1α activation was explored next, and the results showed that SRBI knockout or knockdown may upregulate the expression of HIF-1α, and promote HIF-1α translocation from the cytoplasm into the nucleus <i>via</i> the PKC-β/NF-κB signaling pathway. <b><i>Innovation and Conclusion:</i></b> Our study showed, for the first time, that <i>SRBI</i> deficiency induces iron overload and subsequent ferroptosis <i>via</i> the HIF-1α/TFR1 pathway.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"56-73"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal Administration of Acetaminophen Affects Meiosis Through its Metabolite NAPQI Targeting SIRT7 in Fetal Oocytes. 母体服用对乙酰氨基酚会通过其代谢产物 NAPQI 靶向胎儿卵母细胞中的 SIRT7 影响减数分裂。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-07-01 Epub Date: 2024-02-13 DOI: 10.1089/ars.2023.0270
Fangfei Liu, Junlin He, Xuemei Chen, Ronglu Liu, Fangfang Li, Yanqing Geng, Yuhan Dai, Yan Zhang, Yingxiong Wang, Xinyi Mu
{"title":"Maternal Administration of Acetaminophen Affects Meiosis Through its Metabolite NAPQI Targeting SIRT7 in Fetal Oocytes.","authors":"Fangfei Liu, Junlin He, Xuemei Chen, Ronglu Liu, Fangfang Li, Yanqing Geng, Yuhan Dai, Yan Zhang, Yingxiong Wang, Xinyi Mu","doi":"10.1089/ars.2023.0270","DOIUrl":"10.1089/ars.2023.0270","url":null,"abstract":"<p><p><b><i>Aim:</i></b> Acetaminophen (APAP) is clinically recommended as analgesic and antipyretic among pregnant women. However, accumulating laboratory evidence shows that the use of APAP during pregnancy may alter fetal development. Since fetal stage is a susceptible window for early oogenesis, we aim to assess the potential effects of maternal administration of APAP on fetal oocytes. <b><i>Results:</i></b> Pregnant mice at 14.5 dpc (days post-coitus) were orally administered with APAP (50 and 150mg/kg.bw/day) for 3 days; meanwhile, 14.5 dpc ovaries were collected and cultured with APAP or its metabolite N-acetyl-p-benzoquinone imine (NAPQI; 5 and 15 μ<i>M</i>) for 3 days. It showed that APAP caused meiotic aberrations in fetal oocytes through its metabolite NAPQI, including meiotic prophase I (MPI) progression delay and homologous recombination defects. Co-treatment with nicotinamide (NAM) or nicotinamide riboside chloride (NRC), nicotinamide adenine dinucleotide (NAD<sup>+</sup>) supplements, efficiently restored the MPI arrest, whereas the addition of the inhibitor of sirtuin 7 (SIRT7) invalidated the effect of the NAD<sup>+</sup> supplement. In addition, RNA sequencing revealed distorted transcriptomes of fetal ovaries treated with NAPQI. Furthermore, the fecundity of female offspring was affected, exhibiting delayed primordial folliculogenesis and puberty onset, reduced levels of ovarian hormones, and impaired developmental competence of MII oocytes. <b><i>Innovation:</i></b> These findings provide the first known demonstration that NAPQI, converted from maternal administration of APAP, disturbs meiotic process of fetal oocytes and further impairs female fecundity in adulthood. The concomitant oral dosing with NAM further supports the benefits of NAD<sup>+</sup> supplements on oogenesis. <b><i>Conclusion:</i></b> Short-term administration of APAP to pregnant mouse caused meiotic aberrations in fetal oocytes by its metabolite NAPQI, whereas co-treatment with NAD<sup>+</sup> supplement efficiently relieves the adverse effects by interacting with SIRT7.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"93-109"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138797108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Meta-Analysis of Antioxidant Mutants Reveals Common Alarm Signals for Shaping Abiotic Stress-Induced Transcriptome in Plants. 抗氧化突变体的荟萃分析揭示了植物非生物胁迫诱导转录组形成的共同报警信号。
IF 5.9 2区 生物学
Antioxidants & redox signaling Pub Date : 2024-07-01 Epub Date: 2023-11-24 DOI: 10.1089/ars.2023.0361
Shefali Mishra, Thumballi Ramabhatta Ganapathi, Girdhar Kumar Pandey, Christine Helen Foyer, Ashish Kumar Srivastava
{"title":"Meta-Analysis of Antioxidant Mutants Reveals Common Alarm Signals for Shaping Abiotic Stress-Induced Transcriptome in Plants.","authors":"Shefali Mishra, Thumballi Ramabhatta Ganapathi, Girdhar Kumar Pandey, Christine Helen Foyer, Ashish Kumar Srivastava","doi":"10.1089/ars.2023.0361","DOIUrl":"10.1089/ars.2023.0361","url":null,"abstract":"","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":"42-55"},"PeriodicalIF":5.9,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10402523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信