Kun Liu, Qi-Ming Tan, Jie Zhang, Gong-Hao Li, Yun-Feng Zhao
{"title":"TRPC6 Channel Regulates Airway Remodeling in Chronic Obstructive Pulmonary Disease Causing Right Heart Failure.","authors":"Kun Liu, Qi-Ming Tan, Jie Zhang, Gong-Hao Li, Yun-Feng Zhao","doi":"10.1089/ars.2024.0571","DOIUrl":null,"url":null,"abstract":"<p><p>The role of the canonical transient receptor potential 6 (TRPC6) channel in chronic obstructive pulmonary disease (COPD) remains poorly understood at the mechanistic level. <b><i>Objects:</i></b> This study aims to investigate the involvement of TRPC6 in COPD and its signaling mechanisms in human airway smooth muscle cells (HASMCs). <i><b>Methods and Results:</b></i> The study found that mRNA and protein expression of TRPC6 increased in cultured HASMCs that were incubated with nicotine, as measured by reverse transcription quantitative polymerase chain reaction and Western blot analysis. Nicotine treatment significantly enhanced TRPC6 transcriptional activity in HASMCs through nuclear factor (NF)-κB, as demonstrated by co-immunoprecipitation and electrophoretic mobility shift assays. Furthermore, miR-135a/b-5p was shown to downregulate TRPC6 expression in HASMCs at the mRNA and protein levels, as confirmed by luciferase reporter assays. Immunohistochemistry assays in a mouse model of cigarette-induced airway remodeling revealed a significant increase in smooth muscle (SM) cell proliferation and SM layer mass. <i><b>Conclusion:</b></i> These findings suggest that nicotine exposure increases HASMC proliferation and migration through NF-κB signaling, and that cigarette smoke inhalation causes airway SM layer remodeling <i>via</i> altered TRPC6-induced Ca<sup>2+</sup> influx, which is abolished by miR-135a/b-5p both <i>in vitro</i> and <i>in vivo</i>. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0571","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of the canonical transient receptor potential 6 (TRPC6) channel in chronic obstructive pulmonary disease (COPD) remains poorly understood at the mechanistic level. Objects: This study aims to investigate the involvement of TRPC6 in COPD and its signaling mechanisms in human airway smooth muscle cells (HASMCs). Methods and Results: The study found that mRNA and protein expression of TRPC6 increased in cultured HASMCs that were incubated with nicotine, as measured by reverse transcription quantitative polymerase chain reaction and Western blot analysis. Nicotine treatment significantly enhanced TRPC6 transcriptional activity in HASMCs through nuclear factor (NF)-κB, as demonstrated by co-immunoprecipitation and electrophoretic mobility shift assays. Furthermore, miR-135a/b-5p was shown to downregulate TRPC6 expression in HASMCs at the mRNA and protein levels, as confirmed by luciferase reporter assays. Immunohistochemistry assays in a mouse model of cigarette-induced airway remodeling revealed a significant increase in smooth muscle (SM) cell proliferation and SM layer mass. Conclusion: These findings suggest that nicotine exposure increases HASMC proliferation and migration through NF-κB signaling, and that cigarette smoke inhalation causes airway SM layer remodeling via altered TRPC6-induced Ca2+ influx, which is abolished by miR-135a/b-5p both in vitro and in vivo. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology