Annual Review of Ecology, Evolution, and Systematics最新文献

筛选
英文 中文
The Emerging Phylogenetic Perspective on the Evolution of Actinopterygian Fishes 放光鳍类鱼类进化的系统发育新观点
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-09-03 DOI: 10.1146/annurev-ecolsys-122120-122554
A. Dornburg, T. Near
{"title":"The Emerging Phylogenetic Perspective on the Evolution of Actinopterygian Fishes","authors":"A. Dornburg, T. Near","doi":"10.1146/annurev-ecolsys-122120-122554","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-122120-122554","url":null,"abstract":"The emergence of a new phylogeny of ray-finned fishes at the turn of the twenty-first century marked a paradigm shift in understanding the evolutionary history of half of living vertebrates. We review how the new ray-finned fish phylogeny radically departs from classical expectations based on morphology. We focus on evolutionary relationships that span the backbone of ray-finned fish phylogeny, from the earliest divergences among teleosts and nonteleosts to the resolution of major lineages of Percomorpha. Throughout, we feature advances gained by the new phylogeny toward a broader understanding of ray-finned fish evolutionary history and the implications for topics that span from the genetics of human health to reconsidering the concept of living fossils. Additionally, we discuss conceptual challenges that involve reconciling taxonomic classification with phylogenetic relationships and propose an alternate higher-level classification for Percomorpha. Our review highlights remaining areas of phylogenetic uncertainty and opportunities for comparative investigations empowered by this new phylogenetic perspective on ray-finned fishes. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"20 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78118992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
Sensory and Cognitive Ecology of Bats 蝙蝠的感觉和认知生态学
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-09-03 DOI: 10.1146/annurev-ecolsys-012921-052635
R. Page, Hannah M. ter Hofstede
{"title":"Sensory and Cognitive Ecology of Bats","authors":"R. Page, Hannah M. ter Hofstede","doi":"10.1146/annurev-ecolsys-012921-052635","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012921-052635","url":null,"abstract":"We see stunning morphological diversity across the animal world. Less conspicuous but equally fascinating are the sensory and cognitive adaptations that determine animals’ interactions with their environments and each other. We discuss the development of the fields of sensory and cognitive ecology and the importance of integrating these fields to understand the evolution of adaptive behaviors. Bats, with their extraordinarily high ecological diversity, are ideal animals for this purpose. An explosion in recent research allows for better understanding of the molecular, genetic, neural, and behavioral bases for sensory ecology and cognition in bats. We give examples of studies that illuminate connections between sensory and cognitive features of information filtering, evolutionary trade-offs in sensory and cognitive processing, and multimodal sensing and integration. By investigating the selective pressures underlying information acquisition, processing, and use in bats, we aim to illuminate patterns and processes driving sensory and cognitive evolution. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"91 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77082765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Evolution of Mimicry Rings as a Window into Community Dynamics 拟态环的进化是群落动态的一个窗口
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-09-03 DOI: 10.1146/annurev-ecolsys-012021-024616
Krushnamegh Kunte, A. G. Kizhakke, Viraj Nawge
{"title":"Evolution of Mimicry Rings as a Window into Community Dynamics","authors":"Krushnamegh Kunte, A. G. Kizhakke, Viraj Nawge","doi":"10.1146/annurev-ecolsys-012021-024616","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012021-024616","url":null,"abstract":"Mimicry rings are communities of mimetic organisms that are excellent models for ecological and evolutionary studies because the community composition, the nature of the species interactions, the phenotypes under selection, and the selective agents are well characterized. Here, we review how regional and ecological filtering, density- and frequency-dependent selection, toxicity of prey, and age of mimicry rings shape their assembly. We synthesize findings from theoretical and empirical studies to generate the following hypotheses: ( a) the degree of unpalatability and age of mimicry rings increase mimicry ring size and ( b) the degree of unpalatability, generalization of the aposematic signal, and availability of alternative prey are positively related to the breadth of the protection umbrella for an aposematic signal and negatively related to the degree of mimetic resemblance. We also provide a phylogenetic framework in which key aspects of mimicry ring diversification may be studied. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"37 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83152006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The Alignment of Natural and Sexual Selection 自然选择和性选择的一致性
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-08-31 DOI: 10.1146/annurev-ecolsys-012021-033324
L. Rowe, H. Rundle
{"title":"The Alignment of Natural and Sexual Selection","authors":"L. Rowe, H. Rundle","doi":"10.1146/annurev-ecolsys-012021-033324","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012021-033324","url":null,"abstract":"Sexual selection has the potential to decrease mean fitness in a population through an array of costs to nonsexual fitness. These costs may be offset when sexual selection favors individuals with high nonsexual fitness, causing the alignment of sexual and natural selection. We review the many laboratory experiments that have manipulated mating systems aimed at quantifying the net effects of sexual selection on mean fitness. These must be interpreted in light of population history and the diversity of ways manipulations have altered sexual interactions, sexual conflict, and sexual and natural selection. Theory and data suggest a net benefit is more likely when sexually concordant genetic variation is enhanced and that ecological context can mediate the relative importance of these different effects. Comparative studies have independently examined the consequences of sexual selection for population/species persistence. These provide little indication of a benefit, and interpreting these higher-level responses is challenging. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"33 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84528392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Evolution in Cities 城市的进化
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-08-31 DOI: 10.1146/annurev-ecolsys-012021-021402
S. Diamond, Ryan Andrew Martin
{"title":"Evolution in Cities","authors":"S. Diamond, Ryan Andrew Martin","doi":"10.1146/annurev-ecolsys-012021-021402","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012021-021402","url":null,"abstract":"Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"78 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72803035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
The Ecology and Evolution of Model Microbial Mutualisms 模式微生物共生的生态学和进化
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-08-31 DOI: 10.1146/annurev-ecolsys-012121-091753
Jeremy M. Chacón, Sarah P. Hammarlund, Jonathan N. V. Martinson, Leno B. Smith, William R. Harcombe
{"title":"The Ecology and Evolution of Model Microbial Mutualisms","authors":"Jeremy M. Chacón, Sarah P. Hammarlund, Jonathan N. V. Martinson, Leno B. Smith, William R. Harcombe","doi":"10.1146/annurev-ecolsys-012121-091753","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012121-091753","url":null,"abstract":"Mutually beneficial interspecific interactions are abundant throughout the natural world, including between microbes. Mutualisms between microbes are critical for everything from human health to global nutrient cycling. Studying model microbial mutualisms in the laboratory enables highly controlled experiments for developing and testing evolutionary and ecological hypotheses. In this review, we begin by describing the tools available for studying model microbial mutualisms. We then outline recent insights that laboratory systems have shed on the evolutionary origins, evolutionary dynamics, and ecological features of microbial mutualism. We touch on gaps in our current understanding of microbial mutualisms, note connections to mutualism in nonmicrobial systems, and call attention to open questions ripe for future study. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"24 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86128196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems 森林生态系统共生与腐养真菌营养模式的演化
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-08-31 DOI: 10.1146/annurev-ecolsys-012021-114902
Annie Lebreton, Qingchao Zeng, Shingo Miyauchi, A. Kohler, Yu-Cheng Dai, Francis M. Martin
{"title":"Evolution of the Mode of Nutrition in Symbiotic and Saprotrophic Fungi in Forest Ecosystems","authors":"Annie Lebreton, Qingchao Zeng, Shingo Miyauchi, A. Kohler, Yu-Cheng Dai, Francis M. Martin","doi":"10.1146/annurev-ecolsys-012021-114902","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012021-114902","url":null,"abstract":"In this review, we highlight the main insights that have been gathered from recent developments using large-scale genomics of fungal saprotrophs and symbiotrophs (including ectomycorrhizal and orchid and ericoid mycorrhizal fungi) inhabiting forest ecosystems. After assessing the goals and motivations underlying our approach, we explore our current understanding of the limits and future potential of using genomics to understand the ecological roles of these forest fungi. Comparative genomics unraveled the molecular machineries involved in lignocellulose decomposition in wood decayers, soil and litter saprotrophs, and mycorrhizal symbionts. They also showed that transitions from saprotrophy to mutualism entailed widespread losses of lignocellulose-degrading enzymes; diversification of novel, lineage-specific symbiosis-induced genes; and convergent evolution of genetic innovations that facilitate the accommodation of mutualistic symbionts within their plant hosts. We also identify the major questions that remain unanswered and propose new avenues of genome-based research to understand the role of soil fungi in sustainable forest ecosystems. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"67 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82191714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Animal Migration: An Overview of One of Nature's Great Spectacles 《动物迁徙:大自然奇观之一概览》
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-08-31 DOI: 10.1146/annurev-ecolsys-012021-031035
Adam M. Fudickar, A. Jahn, E. Ketterson
{"title":"Animal Migration: An Overview of One of Nature's Great Spectacles","authors":"Adam M. Fudickar, A. Jahn, E. Ketterson","doi":"10.1146/annurev-ecolsys-012021-031035","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012021-031035","url":null,"abstract":"The twenty-first century has witnessed an explosion in research on animal migration, in large part due to a technological revolution in tracking and remote-sensing technologies, along with advances in genomics and integrative biology. We now have access to unprecedented amounts of data on when, where, and how animals migrate across various continents and oceans. Among the important advancements, recent studies have uncovered a surprising level of variation in migratory trajectories at the species and population levels with implications for both speciation and the conservation of migratory populations. At the organismal level, studies linking molecular and physiological mechanisms to traits that support migration have revealed a remarkable amount of seasonal flexibility in many migratory animals. Advancements in the theory for why animals migrate have resulted in promising new directions for empirical studies. We provide an overview of the current state of knowledge and promising future avenues of study. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"68 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76689903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Dynamics of Ecological Communities Following Current Retreat of Glaciers 冰川退缩后生态群落的动态变化
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-08-31 DOI: 10.1146/annurev-ecolsys-010521-040017
G. Ficetola, S. Marta, Alessia Guerrieri, M. Gobbi, R. Ambrosini, D. Fontaneto, A. Zerboni, J. Poulenard, M. Caccianiga, W. Thuiller
{"title":"Dynamics of Ecological Communities Following Current Retreat of Glaciers","authors":"G. Ficetola, S. Marta, Alessia Guerrieri, M. Gobbi, R. Ambrosini, D. Fontaneto, A. Zerboni, J. Poulenard, M. Caccianiga, W. Thuiller","doi":"10.1146/annurev-ecolsys-010521-040017","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-010521-040017","url":null,"abstract":"Glaciers are retreating globally, and the resulting ice-free areas provide an experimental system for understanding species colonization patterns, community formation, and dynamics. The last several years have seen crucial advances in our understanding of biotic colonization after glacier retreats, resulting from the integration of methodological innovations and ecological theories. Recent empirical studies have demonstrated how multiple factors can speed up or slow down the velocity of colonization and have helped scientists develop theoretical models that describe spatiotemporal changes in community structure. There is a growing awareness of how different processes (e.g., time since glacier retreat, onset or interruption of surface processes, abiotic factors, dispersal, biotic interactions) interact to shape community formation and, ultimately, their functional structure through succession. Here, we examine how these studies address key theoretical questions about community dynamics and show how classical approaches are increasingly being combined with environmental DNA metabarcoding and functional trait analysis to document the formation of multitrophic communities, revolutionizing our understanding of the biotic processes that occur following glacier retreat. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"8 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90459593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Causes, Consequences, and Conservation of Ungulate Migration 有蹄类动物迁徙的原因、后果和保护
IF 11.8 1区 生物学
Annual Review of Ecology, Evolution, and Systematics Pub Date : 2021-08-31 DOI: 10.1146/annurev-ecolsys-012021-011516
M. Kauffman, Ellen O. Aikens, S. Esmaeili, P. Kaczensky, A. Middleton, K. Monteith, T. Morrison, T. Mueller, H. Sawyer, J. Goheen
{"title":"Causes, Consequences, and Conservation of Ungulate Migration","authors":"M. Kauffman, Ellen O. Aikens, S. Esmaeili, P. Kaczensky, A. Middleton, K. Monteith, T. Morrison, T. Mueller, H. Sawyer, J. Goheen","doi":"10.1146/annurev-ecolsys-012021-011516","DOIUrl":"https://doi.org/10.1146/annurev-ecolsys-012021-011516","url":null,"abstract":"Our understanding of ungulate migration is advancing rapidly due to innovations in modern animal tracking. Herein, we review and synthesize nearly seven decades of work on migration and other long-distance movements of wild ungulates. Although it has long been appreciated that ungulates migrate to enhance access to forage, recent contributions demonstrate that their movements are fine tuned to dynamic landscapes where forage, snow, and drought change seasonally. Researchers are beginning to understand how ungulates navigate migrations, with the emerging view that animals blend gradient tracking with spatial memory, some of which is socially learned. Although migration often promotes abundant populations—with broad effects on ecosystems—many migrations around the world have been lost or are currently threatened by habitat fragmentation, climate change, and barriers to movement. Fortunately, new efforts that use empirical tracking data to map migrations in detail are facilitating effective conservation measures to maintain ungulate migration. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"36 1","pages":""},"PeriodicalIF":11.8,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83144056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 27
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信